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Résumé:
Les modèles de très grande taille sont au-

jourd’hui utilisés dans une multitude de domaines
variés et ont permis de généraliser et de populariser
l’utilisation du Deep Learning pour de nouvelles ap-
plications. Cependant, le traitement de ces tâches
toujours plus générales a demandé une augmenta-
tion exponentielle de la taille de ces modèles, ce
qui a également nécessité une puissance de cal-
cul tout aussi importante pour les entraîner. Des
solutions innovantes doivent être trouvées et dé-
ployées pour à la fois réduire la complexité des al-
gorithmes existants et améliorer le déploiement de
ces derniers dans un environnement massivement
distribué avec des données de très grande taille.
Le développement de techniques et de méthodes
de calcul parallèle et distribué est essentiel pour
optimiser l’utilisation des ressources disponibles,
maximiser l’efficacité et réduire les coûts de cal-
cul, répondant ainsi aux exigences croissantes de
ces modèles.

C’est dans ce contexte que s’inscrit cette thèse.
Nous proposons plusieurs contributions pour ré-
duire les coûts associés à l’entraînement des grands
réseaux de neurones dans un environnement mas-
sivement distribué. Nos travaux se concentrent
principalement sur le traitement des données en
amont du modèle pour améliorer la qualité des
données, qui sont ensuite données en entrée du
modèle, dans le but de faciliter son apprentissage.
Nous nous sommes concentrés sur le traitement
des données creuses, telles que les graphes, dont
le traitement pose certains défis en raison de leurs
structures complexes et de leurs tailles potentielle-
ment très élevées. Nous proposons également de
réduire la taille des données en entrée grâce à une
réduction de dimension conservant suffisamment
d’informations pour assurer une bonne précision du
modèle tout en simplifiant les données d’entrée, ré-
duisant par la même occasion la puissance de calcul
nécessaire pour le traitement de ces données.

Title: Distributed and Parallel Computing for very Large Neural Networks
Keywords: Performance optimization, Deep Learning, High performance computing, Neural networks,
Graph computing, Recommender system

Abstract:
Very large model sizes are now a very common

feature, extending the range of applications for
Deep Learning. However, this exponential growth
in model size has led to an equally significant in-
crease in computing power requirements. Innova-
tive solutions need to be found and implemented
to optimize current algorithms, reduce their com-
plexity and make them easy to use and deploy
in a massively distributed environment. The de-
velopment of parallel and distributed computing
techniques and methods to fully exploit available
resources is crucial to maximizing efficiency and
minimizing computation costs is very important to
meet the ever-growing requirements of these mod-
els. In this context, we propose several contribu-

tions to reduce the costs associated with the train-
ing of neural networks in a massively distributed
environment. Our contributions focus on the pro-
cessing of data upstream of the model, in order
to improve the quality of the data supplied to the
neural network and facilitate its training. We fo-
cused on the processing of sparse data, such as
graphs, which pose particular challenges due to
their complex structures and potentially very large
sizes. The processing applied to these data are
designed to significantly improve the model’s per-
formance. Finally, we propose leveraging this pro-
cessing to reduce effectively the size of the data,
thereby decreasing the number of inputs while re-
taining sufficient information to ensure good model
accuracy.





In loving memory of my grandfather





Acknowledgements

Je tiens à exprimer ma profonde gratitude à ma directrice de thèse, Prof. Nahid Emad, pour m’avoir

offert l’opportunité de mener à bien cette thèse. Son soutien constant tout au long de mes recherches

a constitué une source précieuse d’orientation et d’inspiration. J’ai eu la chance unique de bénéficier

de ses vastes connaissances et de son expertise, qui ont enrichi cette aventure aussi bien sur le

plan scientifique que personnel. Je tiens également à remercier chaleureusement mon superviseur

industriel, Dr Chong Li, pour son accompagnement précieux tout au long de cette thèse. Son expertise

technique, sa disponibilité et ses conseils avisés ont été essentiels dans le cadre de mes travaux. Je

suis profondément reconnaissant pour les nombreuses discussions constructives que nous avons eues,

qui ont non seulement enrichi mes recherches, mais également renforcé ma compréhension des enjeux

industriels liés à mon sujet. Mes sincères remerciements vont également au Prof. Serge Petiton pour

m’avoir initialement ouvert la voie de la recherche lors de ma formation d’ingénieur.

Je souhaite également remercier chaleureusement les membres du jury pour l’honneur qu’ils m’ont

accordé en acceptant d’évaluer cette thèse. Je suis particulièrement reconnaissant envers Prof. Corinne

Ancourt et Prof. Michel Daydé, rapporteurs de ce travail, pour le temps qu’ils ont consacré à la lecture

de mon manuscrit ainsi que pour la qualité de leurs commentaires, qui ont permis d’approfondir et

d’enrichir les réflexions présentées ici. Je remercie également Prof. Gaétan Hains, président du jury,

pour avoir accepté ce rôle et pour sa bienveillance tout au long de la soutenance. J’adresse aussi mes

remerciements à Prof. Jack Dongarra, Dr. Géraud Krawezik et au Directeur de recherche Christophe

Calvin pour avoir accepté de faire partie du jury et pour la richesse des échanges lors de la soutenance.

Leurs remarques pertinentes et leurs questions stimulantes ont grandement contribué à nourrir la

réflexion autour de ce travail.

i



Je suis reconnaissant de l’accueil que m’a offert la Maison de la Simulation durant ces années, et

d’avoir eu la possibilité de soutenir ma thèse dans leurs locaux. Un merci tout particulier à Martial

Mancip pour le temps et l’énergie qu’il m’a consacrés lors de mes répétitions dans la salle du mur

d’images, dont les conseils m’ont été d’une grande aide. Je souhaite également remercier toutes les

personnes avec qui j’ai travaillé au centre de R&D de Huawei à Boulogne-Billancourt. Ces années ont

été riches en apprentissages, j’ai eu la chance de travailler aux côtés de collègues inspirants dont les

échanges enrichissants ont grandement contribué à l’aboutissement de ce travail. Ce fut un véritable

plaisir d’évoluer dans un environnement aussi stimulant à vos côtés.

Sur un plan plus personnel, je tiens à remercier du fond du cœur ma famille, à commencer par mes

parents, Isabelle et Christophe, pour l’éducation et les valeurs qui m’ont permis de devenir la personne

que je suis aujourd’hui. Votre amour inconditionnel et les valeurs que vous m’avez partagées forment

une base solide sur laquelle je peux m’appuyer à tout moment. Je remercie aussi ma soeur, Flavie,

qui a toujours été là pour m’écouter et m’encourager. Mes remerciements s’étendent également à tous

les membres de ma famille élargie, dont le soutien, les encouragements et la bienveillance ont été des

moteurs essentiels tout au long de mon parcours. Un merci tout particulier à Annick, Vincent, Sabine

et Guillaume, pour leur présence et leurs conseils précieux.

Enfin, je souhaite adresser ma gratitude la plus sincère à Chloé, qui partage ma vie depuis

maintenant dix ans. Ton amour et ton soutien m’ont porté à chaque étape de ce voyage, et je ne

saurais exprimer à quel point ta présence m’est précieuse. Un immense merci également à Martin,

dont la générosité intellectuelle et le temps qu’il me consacre sans réserve ont été une source constante

d’enrichissement et d’inspiration. Je tiens tout particulièrement à lui exprimer ma reconnaissance

pour son aide précieuse lors de la relecture de mon manuscrit de thèse. Pour conclure, j’adresse toutes

mes pensées et mes encouragements à Ruiwen et Lauer pour la dernière ligne droite de leur thèse. Je

leur souhaite beaucoup de réussite et d’épanouissement dans cette fin d’aventure.

ii



Contents

1 Introduction 15

1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Timeline of deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 From machine learning to deep learning . . . . . . . . . . . . . . . . . . . . 17

1.2.2 The deep learning revolution . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Generalist AI models emerging trends . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Socio-economic and ethical impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 The evolution and impact of high-performance computing . . . . . . . . . . . . . . 24

1.6 Accessibility and cost reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Research areas and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8 Structure of the thesis and contributions . . . . . . . . . . . . . . . . . . . . . . . . 29

2 State of the Art 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Fundamentals of matrix computations in deep learning . . . . . . . . . . . . . . . . 32

2.2.1 Introduction to matrix computations . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Role of matrix computations in neural networks . . . . . . . . . . . . . . . . 32

2.2.3 Computational challenges in large-scale matrix operations . . . . . . . . . . 33

2.2.4 Optimizations for efficient matrix computations . . . . . . . . . . . . . . . . 35

2.2.5 Reduction of model size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Algorithmic methodologies for reducing model size . . . . . . . . . . . . . . . . . . 38

1



2.3.1 Context model size reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Model compression techniques . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Dimensionality reduction strategies and embedding . . . . . . . . . . . . . . 43

2.3.4 Challenges in model size reduction . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Computational challenges in large-scale neural networks . . . . . . . . . . . . . . . 45

2.4.1 Overview of distributed and parallel computing paradigms . . . . . . . . . . 46

2.4.2 Scalability issues in a massively distributed environment . . . . . . . . . . . 49

2.4.3 Parallel training: data parallelism and model parallelism . . . . . . . . . . . 50

2.4.4 AI dedicated hardware architectures . . . . . . . . . . . . . . . . . . . . . . 51

2.4.5 Frameworks for distributed DL . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Innovative Dropping Strategies for Improved Graph Neural Network Accuracy 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Recurrent graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Graph convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 60

3.2.3 Graph autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Spatial-temporal graph neural networks . . . . . . . . . . . . . . . . . . . . 61

3.3 Challenges in deep learning graph applications . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Scalability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Oversmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Method sampling: overview of different strategies . . . . . . . . . . . . . . . . . . . 64

3.5 Extract graph topology information . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.2 HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.3 SALSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Proposed improvements by topology sampling . . . . . . . . . . . . . . . . . . . . . 70

2



3.6.1 Information extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.2 Dropping selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.3 The RankedDrop algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Case studies and experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7.1 Score computation in presented experiments . . . . . . . . . . . . . . . . . 78

3.7.2 Scalability and impact on overfitting . . . . . . . . . . . . . . . . . . . . . . 79

3.7.3 Portability and efficiency on different GNN models . . . . . . . . . . . . . . 81

3.7.4 Experiments reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Optimizing Sparse Matrix Operations for Deep Learning in Distributed Systems 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Fundamentals of sparse matrix computation . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Definition of sparse matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Sparse storage formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.3 Sparse matrix applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.4 Overview of sparse matrices in deep learning . . . . . . . . . . . . . . . . . 93

4.2.5 Data distribution and model distribution . . . . . . . . . . . . . . . . . . . . 94

4.3 Challenges in sparse matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Hardware utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.2 Algorithmic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.3 Succession of matrix-matrix multiplication . . . . . . . . . . . . . . . . . . 96

4.4 Matrix-matrix multiplication succession in distributed environment . . . . . . . . . . 96

4.4.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Data distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.3 Redistribution for the next multiplication . . . . . . . . . . . . . . . . . . . 99

4.4.4 Comparison with other data distribution . . . . . . . . . . . . . . . . . . . . 100

4.5 Efficient and scalable approach to build co-occurrence matrix for DNN’s embedding

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3



4.5.1 How to build co-occurrence matrix? . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2 Pairwise approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.3 Sparse-Pairwise approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.4 Deploying in a massively distributed environment . . . . . . . . . . . . . . . 108

4.6 A priori analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7.1 Experimentation environment and datasets . . . . . . . . . . . . . . . . . . 113

4.7.2 Efficiency and scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7.3 Validation with real-case datasets . . . . . . . . . . . . . . . . . . . . . . . 119

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Spectral Based Embedding Generalization 123

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Importance of embedding initialization . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Spectral methods to compute dominant eigenvectors . . . . . . . . . . . . . . . . . . 125

5.3.1 Restarted projection methods . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Krylov subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.3 IRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.4 MIRAMns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Embedding initialization from dominant eigenvectors . . . . . . . . . . . . . . . . . 131

5.4.1 Embedding strategy from data representation . . . . . . . . . . . . . . . . . 132

5.4.2 Compute and build the embedding table from eigenvectors . . . . . . . . . . 134

5.4.3 How to choose the right dimension for reduction? . . . . . . . . . . . . . . . 135

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5.1 Experimentation environment and datasets . . . . . . . . . . . . . . . . . . 136

5.5.2 Evaluation of MIRAMns distributed implementation . . . . . . . . . . . . . 137

5.5.3 Results with real-case datasets . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4



6 General Conclusion 147

6.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Résumé en Français 151

A.1 Contexte et motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5





List of Figures

1.1 Overview of a single layer perceptron, a basis neural networks with only one perceptron. 18

1.2 Illustration of multilayer perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 CPU and GPU architecture comparison [106]. . . . . . . . . . . . . . . . . . . . . . 36

2.2 Evolution of model parameters and the computational power required for training over

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Parallel and distributed memory architecture. . . . . . . . . . . . . . . . . . . . . . 46

2.4 Illustration of a Bulk-Synchronous Parallel superstep. . . . . . . . . . . . . . . . . . 48

2.5 Model parallelism and data parallelism comparison with 4 computation nodes. . . . . 51

2.6 Simplified Davinci core architecture [139]. This is the chip architecture used in

Ascend boards. We can see a cube used to multiply two matrix blocks of size 16× 16

stored in buffers A and B respectively. The result of the multiplication is 4096

arithmetic operations performed in a single clock cycle. The cube massively boosts

the performance of matrix operations, which account for a very large proportion of

Deep Learning operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Example graph with 7 nodes and 18 edges. . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Overview of the RankedDrop sampling method to pass from the original graph to the

dropped subgraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7



3.3 Scan with Add vector values for the Cora dataset. The orange curve represents the

values when the final score values are sorted in descending order before applying the

Scan with Add. In practice, there is no need to sort the values. However, for the sake

of understanding and comparison, we will present the curves in this configuration. . . 72

3.4 Variation of the Scan With Add (SWA) vectors for Cora, Citeseer and Pubmed datasets

for local structure with degrees and global structure with PageRank. All the values of

the array are presented in percentage on the x-axis. The y-axis represents the value

corresponding to the index in the Scan with Add array. . . . . . . . . . . . . . . . . 73

3.5 Loss payout curve for datasets with the GCN 4 layers architecture in full-supervised

learning. Comparison between the original method, DropEdge (DE) and RankedDrop

(RD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Loss payout curve for datasets with the GCN 4 layers architecture in semi-supervised

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Theoretical memory space needed to store the matrix and execution time to realize

a matrix-vector multiplication in function of data density and compression method.

Execution time is calculated on the assumption that pipelining is not possible with the

sparse format due to unstructured data. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Comparison of the memory required to store the matrix FIDAPM37 [65, 66] and the

execution time to perform matrix-vector multiplication as a function of how the matrix

is stored. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Overview of the data distribution with a grid of 9 by 9 nodes. . . . . . . . . . . . . . 98

4.4 Communications between two matrix multiplications in a sequence. The blue and

orange arrows indicate respectively the communications if the resulting matrix is used

as the left or right term in the next multiplication. . . . . . . . . . . . . . . . . . . . 99

4.5 Example of corpus of words with (b) the incidence matrix and (c) the co-occurrence

matrix associated with the (a) distribution. . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Example of processing with the Pairwise method to construct the co-occurrence

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8



4.7 Overview of the Sparse-Pairwise approach. . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Execution time comparison between the different pairwise and the matrix approaches

to build the co-occurrence matrix in the function of the sparsity. . . . . . . . . . . . 115

4.9 Execution time comparison between the different approaches to build the co-occurrence

matrix in function of the density. Zoom in the interval [0, 0.1]. . . . . . . . . . . . . 116

4.10 Execution time for different co-occurrence matrix building approaches in the function

of the size of n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.11 Strong scalability: Execution time for different co-occurrence matrix building ap-

proaches in the function of the number of processors p. . . . . . . . . . . . . . . . . 119

4.12 Weak scalability: Execution time for different co-occurrence matrix building ap-

proaches with a linear modification of n and p. . . . . . . . . . . . . . . . . . . . . . 120

5.1 Example of graph embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Overview of restarted projection methods. . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Overview of the proposed method to initialize embedding from eigenvectors associated

to dominant eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Comparison of execution time, speedup and efficiency for IRAM and IRAMns exe-

cutions for the covariance matrix of the CIFAR-10 dataset. The figures illustrate the

performance differences between dense and sparse storage matrices. . . . . . . . . . 138

5.5 Comparison of execution time, speedup and efficiency for IRAM and IRAMns exe-

cutions for the covariance matrix of the CIFAR-100 dataset. The figures illustrate the

performance differences between dense and sparse storage matrices. . . . . . . . . . 139

5.6 Comparison of execution time, speedup and efficiency for IRAM and IRAMns ex-

ecutions for the covariance matrix of the MNIST dataset. The figures illustrate the

performance differences between dense and sparse storage matrices. . . . . . . . . . 140

5.7 Comparison of execution time, speedup and efficiency for IRAM and IRAMns exe-

cutions for the Facebook dataset. The figures illustrate the performance differences

between dense and sparse storage matrices. . . . . . . . . . . . . . . . . . . . . . . 141

9



5.8 Comparison of execution time, speedup and efficiency for IRAM and IRAMns execu-

tions for the Epinions social network dataset. The figures illustrate the performance

differences between dense and sparse storage matrices. . . . . . . . . . . . . . . . . 142

5.9 Comparison of test accuracy with the Date fruit dataset with different model sizes as

a function of embedding size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.10 Comparison of test accuracy with the Fetal Health dataset with different model sizes

as a function of embedding size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.11 Comparison of test accuracy with the MNIST image dataset with different model sizes

as a function of embedding size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.12 Comparison of test accuracy with the CIFAR-10 image dataset with different model

sizes as a function of embedding size. . . . . . . . . . . . . . . . . . . . . . . . . . 146

10



List of Tables

2.1 Table of common computation complexities. . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Datasets global information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Accuracy comparison for semi-supervised learning methods for GCN architecture. . 80

3.3 Accuracy comparison for full-supervised learning with GCN, IncepGCN and JK

architectures based on the most efficient dropping architectures with the DropEdge

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Hyper-parameters used to obtain the accuracy presented in the chapter 3 with the

RankedDrop method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Comparison memory and communication with different distribution formats. . . . . 99

4.2 Comparison memory and communication distribution formats. . . . . . . . . . . . . 101

4.3 Comparison of required computation power and memory for approach in a distributed

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Datasets overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Memory complexity for each approach implementation. . . . . . . . . . . . . . . . 114

4.6 Execution time to build the co-occurrence matrix with different approaches for two

values of k. The coefficient represents the coefficients of the linear functions of

execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Execution time in seconds to build the co-occurrence matrix with different approaches.

These results are obtained with p = 1000. The execution times take into account the

time required to build sparse matrices from dataset data, if necessary. . . . . . . . . 120

11



5.1 Datasets Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 General information about the test matrices. . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Hidden size and approximation of the number of parameters for each MLP models. . 141

5.4 Results of Radar dataset with embedding dimension reduction to 10. . . . . . . . . . 142

12



Notations

a A scalar

a A vector

A A matrix

A A tensor

Pn A problem of size n

Kr A order-r Krylov subspace

A A set

R The set of real numbers

C The set of complex numbers

{0, 1} The set containing 0 and 1

{0, 1, ..., n} The set of all integers between 0 and n

[a, b] The real interval including a and b

]a, b] The real interval excluding a but including b

G A graph

ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,j Column j of matrix A

13





Chapter 1

Introduction

1.1 Context and motivations

Artificial intelligence (AI) is currently expanding at an unprecedented rate, marking a revolution in

many sectors and redefining the boundaries of what is technologically conceivable. Once considered

a futuristic domain reserved for science fiction, AI is now ubiquitous in our daily environment,

from intelligent voice assistants to personalized recommendation systems, as well as increasingly

sophisticated industrial and medical applications. This evolution is due to major advances in machine

learning, neural networks and access to massive data, as well as constant improvements in data

processing and computation capacities.

The importance of AI continues to grow, not only because of its potential to transform the global

economy [86], but also because of its central role in solving complex problems on a world-scale [103].

AI also poses major societal and scientific issues relating to computing power, energy consumption

and scalability. The development and training of AI models, in particular large-scale neural networks,

requires considerable computational resources, placing significant demands on computing power.

This necessitates the use of massive data centers and performance-intensive infrastructures, resulting

in elevated energy consumption and contributing to a substantial ecological impact [63]. Indeed,

the carbon footprint of AI, particularly linked to model training, has become a major concern. In

addition, the scalability of AI solutions represents another challenge: as models grow in size and data
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becomes more complex, the ability of infrastructures to support this growth becomes limited, raising

questions about resource efficiency and the long-term viability of current solutions. These challenges

call for innovative solutions to make AI more sustainable, eco-efficient and scalable, while balancing

its benefits with its environmental and social costs [267].

To meet the challenges posed by AI, solutions need to be implemented at all levels. On the

algorithmic level, complexity reduction techniques such as model compression, quantization and

dimensionality reduction help lower computational demands while maintaining performance. Addi-

tionally, certain model architectures are inherently more hardware-friendly; for example, transformers

enable efficient parallelization due to their self-attention mechanism [276], while mixture-of-experts

(MoE) [74] models optimize memory usage by activating only a subset of their parameters per

inference [249].

On the software side, modern deep learning frameworks such as TensorFlow [210], PyTorch [148]

or MindSpore [39] provide powerful tools for developing distributed models, but managing paralleliza-

tion and inter-machine communications remains a major challenge. On the hardware side, specialized

architectures such as GPUs, TPUs and dedicated AI accelerators have considerably improved pro-

cessing capabilities. However, scaling these models on massive parallel infrastructures, such as

supercomputers, requires careful coordination between hardware, algorithms and software [160].

A major challenge lies in developing optimized methods to fully exploit these architectures,

ensuring that AI systems make efficient use of available computing power. Despite advances in

hardware-aware model designs, such as sparsity-aware models [64] and optimized low-precision

computing [110], significant challenges remain. These include increasing model complexity, machine

heterogeneity and workload balancing, all of which must be addressed to build AI systems that are

not only high-performing but also accessible and sustainable.

The objective of this thesis is to enhance the performance of AI models by proposing innovative

solutions to reduce the costs associated with their development and training. Specifically, we present

our contributions that aim to minimize the training costs of AI neural networks in massively distributed

environments. Our contributions focus on the processing of data upstream of the model, in order to

improve the quality of the data supplied to the neural network thereby facilitating and optimizing
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the training process. Particular attention is given to the processing of sparse data presented in graph

form, which represents important challenges due to their complex structures and potentially large

sizes. The preprocessing techniques we propose are designed to significantly enhance neural network

performance. Additionally, we leverage these preprocessing methods to effectively reduce the size of

the data, thereby decreasing the number of inputs while preserving sufficient information to maintain

high model accuracy.

1.2 Timeline of deep learning

The history of Deep Learning (DL) requires a more general interest in the history of machine learning

(ML), which will later lead to the emergence of deep learning.

Machine learning is a vast field of study that brings together a set of mathematical and statistical

approaches to enable computer systems to solve problems without explicitly programming the solutions

to solve them. ML models take data and analyze it to create a model that is then used to make

predictions with new data. This is a broad field that has been supported by the desire to create

intelligent algorithms, which can generally be grouped under the term of artificial intelligence.

1.2.1 From machine learning to deep learning

Even if the term machine learning has been popularized recently, it was first used in 1959 [239] where

ML is defined as an approach to learning from experiments to reduce the workload of the programmer.

For the last twenty years, the investigation in the field of artificial intelligence has been very promising.

Several projects have generated a lot of excitement around AI during this period [204, 87]. It is also

at this era that was introduced the neural system with a weight system for the connections between

neurons [119], which contributed to the discovery of the perceptron [232] (Figure 1.1). The perceptron

principle is still used today in many neural network architectures.

This period of enthusiasm has been replaced by a disillusionment about AI. The performance of

the current systems and the small amount of data were not enough to meet the ambitions in the field.

Moreover, the neural network structures did not allow to solve complex problems because of the large
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Figure 1.1: Overview of a single layer perceptron, a basis neural networks with only one perceptron.

number of parameters. The gap between the promised results and the reality led to a significant decline

in investment in the field of neural networks.

The resurgence of interest in neural networks has been particularly driven by the exponential

growth in data availability, often referred as Big Data. This vast influx of information, combined with

advances in computational power, has enabled the effective processing of large datasets, facilitating

robust model training.

In addition to data abundance, machine learning advancements have been fueled by the emergence

of more sophisticated algorithms, such as convolutional neural networks. These algorithms have

become feasible to implement and train due to significant improvements in computational capabilities,

particularly the advent of graphics processing units. These hardware accelerators are ideal for matrix

manipulation, a critical operation in neural network architectures since it intervenes in almost all stages

of the algorithms.

This period also marked the formal distinction of the subfield of deep learning, whose much deeper

architecture gives them the ability to learn complex representations from large-scale data.
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1.2.2 The deep learning revolution

In 1986, [233] and [234] introduced back-propagation, a new learning procedure. This method updates

the weights of a neural network during training [167]. It allows propagating the error backward through

the network layers, starting from the difference between the predicted output and the desired theoretical

output. Error minimization is an iterative process that repeatedly updates the network’s weights and

biases until convergence (purple elements in the figure 1.1). This approach significantly accelerates

the convergence of weights and opens the way for training very large neural networks, which were

previously untrainable due to essentially computational limitations and inefficient learning algorithms.

Back-propagation has been instrumental in making the growth and advancement of deep learning.

Deep learning is a sub-field of machine learning that utilizes artificial neural networks with multiple

layers to automatically learn and extract meaningful patterns or representations from data (Figure 1.2).

The term deep learning is originally used to designate methods to increase the model sizes [98].

To make deep neural networks allows the computer to learn complicated features or concepts by

building them out of simpler ones. Deep learning models have capacity for self-improvement and

adaptation, enabling them to converge empirically on a high-performance solution to complex tasks

whose solution cannot be put into mathematical form. It is particularly effective for tasks involving

large datasets and complex structures, such as image recognition, natural language processing and

speech processing.
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As the 1990s began, the excitement surrounding neural networks started to fade. The limitations of

the era’s hardware, combined with the theoretical challenges of training deep networks, pushed deep

neural networks to the sidelines of artificial intelligence research. Instead, other machine learning

methods, such as support-vector networks [47], began to dominate the landscape due to their superior

performance on many practical problems and their much lower computational power requirements for

learning.

But at that time, the challenge lays mainly in the problem of overfitting. Overfitting is a phenomenon

where a model performs too well on training data but fails to generalize to unseen data. This is a

frequent phenomenon [114] that is observed when the model starts to learn the noise that exists among

the training values. This problem was amplified by the limited size of the available datasets. In the

absence of sufficient data, deep neural networks tended to memorize rather than learn, making them

unreliable for real-world tasks.

Another challenge was the vanishing gradient problem [128]. In a neural network, the training

process involves adjusting the model’s internal parameters using a method called gradient descent [49].

However, when the network becomes deeper, the gradients used to adjusting the model’s weight would

diminish as they were propagated backward through the layers. By the time they reached the initial

layers, these gradients were often so small that they became ineffective, halting meaningful learning

in deeper networks.

Despite the challenges, a small group of researchers continued to advance the field of deep learning.

Their efforts focused on developing solutions to mitigate challenges issues, in particular to prevent

overfitting [94, 222, 295]. In 1998, the convolutional neural networks [168] were introduced for image

recognition. This model was designed to process image data by mimicking the way the human visual

cortex operates. It introduced concepts like filters and feature maps, allowing the network to focus

on different aspects of an image like distinctive patterns or specific textures. Although constrained by

the technology of the era, this model established the foundations for breakthroughs that would come

years later.

The introduction of AlexNet in 2012 marked a decisive shift in the field of deep learning. AlexNet

is a deep CNN that stunned the world by achieving unprecedented accuracy in an image recognition
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competition in 2012 [235]. AlexNet’s use of hardware accelerators for computation allowed to

drastically reduce training times and made deep learning models more practical. The success of

AlexNet wasn’t just a technical milestone; it was a cultural shift. The AI community, which had

largely dismissed neural networks for decades, was compelled to recognize this technical progress.

For the first time, deep learning demonstrated its ability to outperform traditional machine learning

techniques on a real-world, large-scale task.

The impressive accuracy of AlexNet put the light back on deep learning and led to a veritable craze

for pushing back the boundaries of deep neural networks. Deep learning methods have been applied

to many different types of data and to a wide variety of applications, greatly extending the limits of

what neural networks can do.

Another true revolution came in 2017 with the introduction of the transformer architecture [276].

Transformer introduces the mechanism of self-attention, which enables the capture of dependencies

and long-distance relationships in input data. This mechanism has completely disrupted the state

of the art of natural language processing, which is the field that focuses on enabling computers to

understand, interpret and generate human language [303]. Indeed, the most accurate previous models

were recurrent neural networks, which were able to keep the few previous elements in memory, but

struggled with long-term dependencies. This innovation formed the backbone of large language models

like BERT (Bidirectional Encoder Representations from Transformers) [147] and GPT (Generative

Pre-trained Transformer) [225], which redefined tasks like machine translation, text generation or

question answering.

The Transformer architecture not only revolutionized natural language processing but also paved

the way for a new paradigm in AI: models capable of generalizing across multiple tasks. With the rapid

scaling of deep learning, researchers began exploring architectures that could perform well beyond

specialized domains, leading to the emergence of generalist AI models.
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1.3 Generalist AI models emerging trends

Deep learning has been a field of research for a long time, but its popularity has exploded in recent years.

Thanks to the convergence of high-performance hardware systems, data availability and advancements

in AI, the rapid growth of deep neural networks has revolutionized many fields, from image recognition

to machine translation. Powerful language model and image generator tools have been made available

to the general public, facilitating access to technologies once reserved for experts. It is precisely the

versatility of these tools that makes them so easy to use and the results quite convincing.

However, to be able to respond to a wide variety of tasks without having been specifically trained

for them, AI models have grown exponentially in size and complexity [246]. In a brutal approach, the

model is fed with as much data as possible, and its size is expanded to the maximum so that it can be

generalized. Today, there is a race to develop ever more powerful models for ever larger tasks. But this

poses a number of problems to be solved and challenges to be met. These include problems related

to the computational power required and the scalability of algorithms and architectures. In terms

of methods, the development of very large models requires vast amounts of data for training, which

poses problems of data availability and data quality. The carbon footprint and the development cost of

training and operating large AI models are also growing challenges, posing problems of sustainability,

equitable access to technology and concentration of power among a few large corporations.

The emergence of DeepSeek models in this last time have confirmed this landscape. The models

DeepSeek-R1 [107] and DeepSeek-V3 [182] demonstrated that highly capable, generalist AI systems

can be developed with a focus on algorithmic efficiency. By offering a competitive performance at a

fraction of the computational cost, this model challenges the dominant paradigm of scaling models

indefinitely and highlights algorithmic strategies to build generalist AI. Its open-source and cost-

effective approach has sparked debates on the future of AI accessibility and global AI competition.

This development underscores a shift where efficiency and feasibility become as crucial as raw model

power.
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1.4 Socio-economic and ethical impact

The design and the training of generalist AI models are extremely resource-intensive due to their size.

The number of parameters is so large and the amount of data to be ingested so vast, that training an

AI model today requires hundreds or even thousands of hardware units working together in parallel

for several months at a time. According to some estimates based on available information [67, 245],

Gemini 1.0 Ultra [269] presented in December 2023 required the use of 55 000 Google TPU v4

for around 100 days to train this model. For GPT-4 [2], estimates suggest 25 000 A100 GPUs for

approximately 3 months. This puts the training costs for these two models at between 30 and 40

million dollars. This cost does not take into account the training of intermediate models that were

trained but did not meet performance requirements. The cost of such training is counted in millions

of dollars and requires large amounts of electricity [214]. In addition to training, using a large model

requires a significant amount of computation to traverse the network and obtain results, which in

turn leads to higher electricity consumption [263]. As a result, the creation of such a very large

model is only possible and conceivable for a small number of major international corporations and

governments [137], limiting access to these technologies to only those with the necessary resources.

This concentration of strategic technological power raises important questions about the equity and

accessibility of AI. Indeed, small businesses, academic institutions and developing countries may find

themselves at a disadvantage, unable to compete with the technology giants. The models proposed by

DeepSeek show that it is conceivable for these smaller participants to build and train accurate models

with more reasonable costs thanks to algorithmic strategies for reducing costs.

Moreover, the environmental impact of training and using these models is a growing source of

concern. Massive energy consumption contributes to the emission of greenhouse gases, exacerbating

global climate challenges. This increase is unsustainable in the long-term, because if it continues at

this current speed, the predicted cost of training for the largest AI model would be higher than the

estimated GDP of the United States over the same period [120]. It is therefore crucial to develop more

efficient and sustainable methods for training and operating AI models.

To meet these challenges, solutions must be found at all levels to reduce computing costs and the

ecological footprint, while improving accessibility to a wider range of actors. One of the key avenues
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for addressing these challenges lies in advances in high-performance computing. Understanding how

HPC has developed over time, and the impact of these advancements on AI, provides essential context

for exploring potential solutions to the growing computational and environmental demands of modern

AI systems.

1.5 The evolution and impact of high-performance computing

Over the decades, technological advancements have significantly increased the speed and capacity

of supercomputers. The term supercomputer is used to describe computers designed to achieve the

highest possible performance using the technologies available at the time of their design. The first

massively parallel computers emerged in the 1970s, with the ILLIAC IV being the first computer

of this type with 64 floating-point units [130]. The 1980s saw further advancements in massively

parallel computing, exemplified by the Connection Machine [124], which had more than 65,000

1-bit processors [192]. These early supercomputers were capable of several million operations per

second [240, 296]. In the 1980s, the parallelization of computations made it possible to process tasks

simultaneously, thereby increasing processing speed. In the early 1990s, the concept of computer

clustering began to take shape as an effective approach to achieve high-performance computing.

There has been an increasing trend to move away from expensive, specialized, proprietary parallel

supercomputers, towards computer networks that are more affordable [252]. Numerous tools were

developed during this period, such as Parallel Virtual Machine (PVM) [18] or Message Passing

Interface (MPI) [58], which have become key tools for enabling communication between nodes in the

distributed systems. These tools allowed programmers to write distributed applications more easily,

thanks to an abstraction of the hardware resources for the programmer. It was also during this period

that job schedulers [75] were democratized to manage and optimize the execution of computational

tasks in distributed or parallel computing environments. For the last decades, the most powerful

machines are parallel and distributed architectures: they are equipped with a large number of cores

on a node. Each node is connected to the others by a network that will give them the capacity to

communicate. These are complex architectures, whose characteristics must be taken into account
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to develop algorithms that exploit their maximum power. High-performance computing is used to

design adapted algorithms capable of solving complex problems using all the computing power of

these supercomputers.

High-performance computing (HPC) can be considered as a set of algorithmic concepts and

programming techniques for processing large among of data and running complex calculations on

advanced computing architectures. In [257], the authors define HPC as a field of endeavor that

relates to all facets of technology, methodology and application associated with achieving the greatest

computing capability possible at any point in time and technology. It can also be be considered

representing the set of technologies, hardware and software that are used to improve computing

performance.

Initially, HPC was used mainly in scientific research and engineering for complex simulations

and the processing of large amounts of data. With time, the use of HPC has been extended to

various sectors such as finance, medicine and entertainment, where intensive computing power has

become crucial for data processing and modeling. HPC systems operate at much higher speeds than

traditional desktops or servers, making them capable of performing complex tasks in real time, such

as DNA sequencing, automating stock market transactions, or running advanced artificial intelligence

algorithms and simulations.

Cloud-based HPC solutions have emerged as a significant trend [109], enabling organizations to

access supercomputing power on demand without the need for significant capital investment in physical

infrastructure and without knowledge of the underlying architecture. This shift has democratized access

to HPC, allowing small and medium-sized enterprises to leverage powerful computing resources

for innovation in various fields [186]. However, cloud computing raises a few concerns such as

confidentiality, data security and the reliance on third-party providers, which can affect control over

sensitive information and compliance with privacy regulations [38].

As the field continues to advance, HPC is expected to play a central role in addressing a large

number of the world’s most pressing challenges, including climate modeling, drug discovery and

real-time language translation. By harnessing the power of cutting-edge hardware and innovative

algorithms, HPC stands at the forefront of technological progress, driving breakthroughs across a
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wide array of disciplines.

The recent convergence of HPC and AI has opened up an even wider range of applications [59].

HPC’s ability to process vast amounts of data and perform complex computations at extraordinary

speeds has complemented AI’s capacity for learning patterns, making predictions and optimizing

systems. The huge increase in computing power has made it possible to train ever larger models,

resulting in the development of large language models.

This thesis is firmly rooted in the context of HPC, leveraging its capabilities to address the

challenges posed by training and optimizing very large neural networks in massively distributed

environments. The computational demands of modern AI models align closely with the objectives of

HPC: maximizing efficiency and scalability in processing large and complex datasets. By focusing

on preprocessing techniques and distributed algorithms tailored for HPC architectures, this research

aims to reduce training costs while keep the model performance or even improve it.

1.6 Accessibility and cost reduction

As generalist AI models offer extraordinary possibilities, it is essential to continue exploring ways

of making their development and use more accurate, equitable and sustainable. Ecological impact is

directly related to the amount of computation, storage and communications required to train and use

an AI model. This poses a considerable challenge, given that the computing power required to train

large models tends to be multiplied by 4.2 each year [244]. Modern high-performance system possess

immense computing power, but it is often not the primary factor limiting their performance. Instead,

performance is frequently constrained by memory access and communication between nodes.

Innovative solutions must, therefore, be implemented to optimize existing algorithms and propose

new ones that meet the criteria of precision and computational efficiency. These algorithms and models

must present an intrinsic parallelism, making their deployment on parallel and distributed systems

easy and efficient. Optimizing efficiency can have a significant impact, especially since models loop

a very large number of times. In addition, the development of parallel and distributed computing

techniques to fully exploit available resources is crucial to maximize efficiency and minimize energy
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costs. By fully exploiting available resources, such as high-performance computing clusters and cloud

infrastructures, it is possible to distribute workloads more evenly and reduce overall model costs.

This thesis focuses on advancing algorithmic performance to address these challenges ensuring the

development of models and methods that are not only computationally efficient but also aligned with

the principles of sustainability.

1.7 Research areas and scope

The efficiency of large models depends mainly on the algorithm that describes them, as well as on

the quality of the data used to train them. Before deploying these large models on high-performance

systems, it is essential to optimize them from a conceptual point of view. This means to design

an optimal model delivering accurate and relevant results, all stages of the corresponding algorithms

must be optimized, such as reducing dimensionality, considering data sparsity and introducing intrinsic

parallelism. Ensuring high-quality data is also crucial for achieving reliable and relevant outcomes.

In addition, to effectively deploy these models on high-performance architectures and fully exploit the

capabilities of these systems, it is essential to consider efficient parallel and distributed programming

paradigms to implement these models.

The scope of this thesis is centered on addressing both of these aspects: model optimization and its

effective implementation for high-performance systems. In other words, we aim to optimize training

processes through both algorithmic efficiency and practical deployment.

This thesis primarily focuses on the optimization of the training processes of very large neural

networks. The focus is on methods and applications at the preprocessing stage of the models, although

dimensionality reduction methods discussed in this thesis can be applied to all levels of deep learning

models.

A key aspect of our investigation involves designing and optimizing algorithms which take into

account constraints that can be both application-specific, such as data sparsity and numerical stability,

and high-performance infrastructure-specific such as high-performance programming constraints and

potential resource limitations. In addition to the merely adapting existing algorithms, we propose
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novel algorithmic strategies tailored for large-scale distributed deep learning environments. These

algorithms are designed to optimize the partitioning of workloads and dynamically adjust communica-

tion patterns. This ensuring robustness and scalability in high-performance computing environment.

Furthermore, this thesis places particular emphasis on the challenges posed by sparse data struc-

tures, such as graphs, which introduce specific computational complexities. Unlike dense datasets,

sparse data requires specialized preprocessing techniques to ensure that relevant information is retained

while reducing unnecessary overhead. Efficient data representation, transformation and selection are

key factors in mitigating the computational burden of training large neural networks in distributed

settings.

To reach this objective, we investigate preprocessing strategies that enhance data quality by effec-

tively reducing noise and redundancy while preserving essential structural properties. In particular,

we explore feature selection and dimensionality reduction techniques specially designed for sparse

data. By optimizing these processes before model training, we aim to enhance the efficiency of deep

learning models while minimizing resource consumption.

Another core contribution of this work is proposing advanced data partitioning and workload

distribution strategies that facilitate efficient parallel processing. Given the complexity of graph-

structured data, traditional partitioning methods may lead to imbalanced workloads and excessive

inter-node communication. Our research explores novel partitioning techniques that take into account

both computational load and communication overhead, thereby improving the overall efficiency of

distributed training.

Additionally, we utilize data preprocessing to reduce the volume of input data without compro-

mising the integrity of the information required for effective learning. This is particularly beneficial

in high-performance computing environments, where memory and computational resources must be

allocated efficiently. Therefore, we employ dimensionality reduction techniques by innovative numer-

ical methods that effectively compress the data while preserving its essential characteristics. Through

careful design and evaluation, we demonstrate that our methods lead to substantial improvements in

training efficiency and model performance.
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1.8 Structure of the thesis and contributions

The document is organized according to the following structure.

Chapter 2 provides an overview of state-of-the-art techniques for reducing computational com-

plexity in deep learning models. Therefore, we will look at the different methods and approaches used

to reduce model size and answer the challenges associated with training these very large models in a

parallel and distributed environment.

Chapter 3 presents graph neural networks, where we propose a solution to improve the performance

of these networks by extracting topological information from the graph. We introduce an improved

dropping technique, incorporating numerical ranking methods to ensure better consistency in graph

generation. The next chapter, proposes solutions to address some sparse programming challenges.

Chapter 4 investigates the advantages of data sparsity from both algorithmic and programming

perspectives. We examine key operations involving sparse matrices, which are frequently encountered

in deep learning models, and propose solutions to optimize their processing in a massively distributed

environment.

Extending the discussion on preprocessing dimensionality reduction, the chapter 5 addresses the

challenge of high dimensional input data. We propose a general solution for building an embedding

of input data that preserves maximum information while significantly reducing the dimension of the

model’s input data.

After having presented and discussed the proposals we have made to reduce the size of the models,

we conclude our investigation and present potential future research directions in chapter 6, including

an overview of possible applications of numerical methods for improve algorithms representing the

models.
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Chapter 2

State of the Art

2.1 Introduction

In the previous chapter, we examined how the exponential growth of deep learning models has led

to significant computational challenges in both training and deployment. As model sizes continue

to expand, the associated resource demands—ranging from memory consumption to computational

power—have escalated dramatically, making scalability and efficiency critical concerns. The main

objective of this thesis is to address these challenges by proposing techniques to reduce both the size

of large neural network models and their computational cost, thereby improving their feasibility in

large-scale applications.

Thus the objective of this chapter is to present an overview of the current state of the art in the

algorithmic methodologies of these models. It also provides an overview of parallel and distributed

programming paradigms, as well as high performance systems that enable their efficient implementa-

tion.

31



2.2 Fundamentals of matrix computations in deep learning

2.2.1 Introduction to matrix computations

Matrix calculations are fundamental operations in computational sciences. Matrices can be represented

by rectangular arrays, which are particularly interesting for representing a set of data in an organized

and ordered way in rows and columns. Key matrix operations include addition, multiplication,

transposition and inversion. They allow to manipulate these data structures efficiently, enabling

transformations, optimizations and solutions to complex mathematical problems.

Matrices play a crucial role in various scientific and engineering disciplines, including physics [195],

computer science [259] and machine learning. In linear algebra, they provide a framework for solving

systems of linear equations and eigenproblems [96], two fundamental tasks in numerical analysis.

In computer pics, matrices facilitate geometric transformations such as rotations, scaling and trans-

lations. Moreover, eigenvalues and eigenvectors, key concepts in matrix theory, are widely used

in stability analysis, quantum mechanics and for dimensionality reduction. With the evolution of

high performance computing, matrix computations have become increasingly efficient, allowing high

performance large-scale simulations, high performance deep learning applications, etc.

2.2.2 Role of matrix computations in neural networks

Matrices are used primarily to represent certain data and neural network components. This is generally

the case for input data. A batch of input samples is typically stored as a matrix, where each row

corresponds to a single data sample and each column represents a feature. Matrices are also used to

represent the values of each layer of the neural network. A matrix is used to store the weights that will

transform the layer’s input values (purple elements in figure 1.1). The layer’s biases are also stored in

the form of a vector.

Matrix operations are ubiquitous in neural networks. Matrix multiplication is the primary operation

in forward and backward propagation, where input matrices are multiplied by the layer weight matrices

to progress in the neural network [169]. For a simple feedforward network, given an input vector x,

the bias vector b and the weight matrix W , the pre-activation function output vector y is expressed
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as:

y = Wx+ b (2.1)

After that, activation functions is applied to break the linearity [248]. This is an element-wise

operation. Gradient calculations also involve matrix multiplication and transposition [5, 14].

Beyond fully connected layers, matrices are essential for more complex neural network structures.

In convolutional neural networks, weight matrices are replaced by small filters that convolve over input

feature 2D or 3D maps, reducing the number of parameters while preserving spatial relationships [168].

In a similar way, recurrent neural networks rely on matrix multiplications to maintain and update hidden

states over time [127]. Transformer models use attention mechanisms based on matrix multiplications

to compute relationships between input tokens [276].

2.2.3 Computational challenges in large-scale matrix operations

Notation Name Example of Applications

O(1) Constant complexity Access to one element for a matrix Ai,j

O(log n) Logarithmic complexity Binary search algorithm

O(n) Linear complexity Find a specific value in a vector

O(n log n) Quasi-linear complexity Heapsort

O(n2) Quadratic complexity Matrix-vector multiplication

O(n3) Cubic complexity Matrix-matrix multiplication

O(2n) Exponential complexity Knapsack problem with naive approach

O(n!) Factorial complexity Find the best solution of Traveling salesman problem
with naive approach

Table 2.1: Table of common computation complexities.

Efficient implementation of matrix operations is crucial for scaling neural networks. However,

the high complexity of matrix operations poses a challenge for processing very large matrices. As

shown in table 2.1, the scalability of processing large-scale matrices is hindered by the quadratic and

cubic complexities of these operations. Large-scale models, such as deep convolutional networks and
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transformer-based architectures, involve billions of parameters that require extensive matrix multipli-

cations and transformations. These operations pose significant computational difficulties due to their

high memory requirements and execution time.

Firstly, there are memory-related problems. Matrix operations in deep learning consume a large

amount of memory, particularly in models that process high-dimensional input data or have large-scale

layers. Storing weight matrices, intermediate activations and gradients for backpropagation can quickly

exceed the available memory on the hardware. Techniques such as mixed-precision training [196]

and memory-efficient optimizers [53] help mitigate these challenges, but memory limitations remain

a major concern in large-scale training.

Modern deep learning relies on parallel computation using specialized accelerators, which opti-

mize matrix operations through highly parallelized and/or vectorized computations [73]. However,

achieving efficient parallelization is non-trivial due to communication overhead, memory bandwidth

constraints and load balancing across multiple devices [19]. The limitation of matrix computation can

also result from data access issues. Efficient utilization of cache memory plays a crucial role in the

performance of large-scale matrix operations. Due to the hierarchical nature of memory in modern

computing architectures, frequent data transfers between different levels of cache, RAM and storage

introduce latency that can significantly slow down computations [122]. Additionally, accessing large

datasets from storage devices or remote locations creates bottlenecks that reduce performance. Op-

timizations such as tiling [12] or prefetching can be implemented to reduce the risk of blocking and

ensure sufficient data flow to load the computation units. However, efforts should be made to minimize

communications in order to prevent overloading the network

The computation complexity represents also a major challenge for scaling deep learning appli-

cations. The fundamental level 3 BLAS matrix multiplication operation, which is prevalent in both

forward and backward passes of neural networks, has a computational complexity ofO(n3). Although

optimized approaches like Strassen’s algorithm [261] reduce the complexity to approximatelyO(n2.8),

these methods often introduce trade-offs in numerical stability. In addition, these optimized algorithms

generally require more memory to store intermediate results [135], making them unsuitable for use

with very large models due to existing memory constraints. Additionally, specialized techniques such
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as sparse matrix multiplications help reduce computational demands by leveraging sparsity patterns

in weight matrices [201], but these are complex operations to perform.

2.2.4 Optimizations for efficient matrix computations

We have seen that matrix operations are very widespread and represent a significant portion of

all computations in many application, in particular in deep learning. Consequently, the hardware

architectures of accelerators have adapted to this reality.

Although GPUs (Graphics Processing Units) were initially designed for video games to accelerate

computer graphics and rendering [84], in the mid-2000s they began to be used to speed up calculations

for training neural network models. Deep learning tasks require the processing of large quantities

of data in parallel, and it is this capacity offered by GPUs that has made them a relevant choice for

accelerating calculations. The processing speed of matrix operations is much faster on GPUs. This is

due to differences in architecture compared to a CPU. As can be seen in figure 2.1, the GPU is made

up of hundreds or even thousands of small independent computation cores with very small shared

caches, unlike CPUs, which have a small number of complex cores and very large caches. GPUs excel

at tasks involving parallel calculations and simple independent arithmetic operations. As we detailed

in 2.2.2, this is the type of computation we find when training a neural network. We will discuss the

optimizations at the hardware accelerators level in more detail in section 2.4.4.

Efficient matrix computations in deep learning depend not only on hardware but also on highly

optimized software libraries and frameworks. General-public deep learning frameworks (which we

will look at in more detail in section 2.4.5) are based on libraries specialized in the implementation

of linear algebra operations. These high performance libraries ensure efficient implementation for

matrix operations.

BLAS (Basic Linear Algebra Subprograms) are a collection of standardized routines used to

perform basic operations in linear algebra, such as vector and matrix operations [164]. They are used

as fundamental building blocks for more complex algorithms and methods. BLAS are essential for

HPC applications, as they enable elementary operations to be defined and optimized to make the most

of the hardware’s computing power.
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Figure 2.1: CPU and GPU architecture comparison [106].

The BLAS routines are classified into three levels, the first covering all vectorial operations. The

routines here only manipulate scalars or vectors. This level includes for example the dot product or the

multiplication of a vector by a scalar. Level 2 [56] covers all operations that manipulate one and only

one matrix. The most popular Level 2 operation is matrix-vector multiplication. There are also used

for solving a system of linear triangular equations. Finally, BLAS Level 3 covers all matrix-matrix

operations [57]. Level 3 contains the multiplication operation between two general matrices [44].

Built on BLAS, LAPACK [7] (Linear algebra package) provides more advanced matrix computa-

tions such as solving linear equations, eigenvalue decompositions and singular value decomposition.

LAPACK’s algorithms have been extensively optimized for performance on a variety of hardware

architectures, making it a reliable and indispensable tool in the field of numerical linear algebra.

Hardware manufacturers are developing libraries to perform these matrix operations on their

accelerators efficiently. For example, NVIDIA proposes its own BLAS implementation for its GPU

accelerators, called cuBLAS1. The cuBLAS library can be called by programmers as an API for

performing matrix operations on GPUs. In this way, the user ensures that the implementation of the

matrix operation will be specially optimized for this type of hardware architecture.

1https://docs.nvidia.com/cuda/cublas/index.html
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2.2.5 Reduction of model size

Optimizing matrix computations is a very interesting way of increasing computational efficiency and

reducing the execution time required to perform operations. However, with very large models, this is

not enough to ensure that training can be processed within an acceptable time. In this case, reducing

the size of the models is the main lever available to reduce the computational power needed to train

these models. Indeed, the number of parameters in the model has a proportional impact on the required

computational power [43]. It has been shown that implementing methods to train a model with fewer

parameters more efficiently has a significantly greater impact on model accuracy compared to merely

increasing the number of parameters [15].

The first solution to reducing model size is to modify the model architecture. By removing a layer

or reducing the number of perceptrons in that layer, we reduce the number of weights to be trained in

the model, which has an immediate impact on the computational power required for training. However,

finding the right compromise is not an easy task, both in terms of minimizing size and ensuring that

the model is large enough to be trained and generalized.

A second approach to reduce the model size involves modifying the size of the input data.

Efficient data reduction enables a significant decrease in neural network size without compromising

accuracy [100]. One widely used strategy is dimensionality reduction, which refines input patterns

by identifying and preserving only the most relevant features while filtering out redundant or less

informative data [268]. By capturing correlations between input variables, dimensionality reduction

not only reduces complexity but also enhances interpretability. Reducing the dimensionality of data

can help to understand hidden structures and pattern [205].

Beyond improving data representation, dimensionality reduction techniques also contribute to

practical advantages in data processing. High-dimensional data can be computationally expensive

and challenging to work with, often leading to increased processing time and resource consumption.

By reducing dimensionality, these methods minimize the effort required to extract valuable insights,

making data analysis more scalable and efficient [9]. This scalability is especially important for

handling large datasets where excessive data complexity can prevent performance [68].

Furthermore, dimensionality reduction plays a vital role in improving predictive accuracy. Re-
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moving the noise in data or irrelevant features, dimensionality reduction techniques improve data

prediction and analysis [227]. Additionally, by simplifying the input space, these techniques enable

models to process information more effectively, reducing computational burden while maintaining or

even enhancing accuracy. Implementing such methods ensures that the DL models work efficiently,

making predictions with greater clarity and reliability.

Another complementary approach to reducing model size is network sparsification. The network

sparsification involves pruning less important connections within a neural network while preserving

its predictive capabilities [129]. By identifying and eliminating redundant or low-impact parameters,

sparsification reduces memory and computational requirements, making models more lightweight

and efficient. These techniques help maintain model performance while significantly decreasing

the number of active parameters, thereby reducing the model complexity and its size [112]. For

sparsification solutions to significantly enhance both model accuracy and size reduction, they must be

implemented efficiently [20]. We will explore in more detail the different methods for reducing model

sizes in the following section.

2.3 Algorithmic methodologies for reducing model size

As neural network models continue to grow in complexity and size, their computational demands

increase significantly, making them challenging to deploy on resource-constrained devices. To ad-

dress this issue, various algorithmic methodologies have been developed to reduce model size while

maintaining performance. This section explores key techniques such as dimensionality reduction and

model compression techniques. By optimizing model architecture and improving efficiency, these

approaches enable scalable and cost-effective deployment of machine learning models across diverse

applications.
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Figure 2.2: Evolution of model parameters and the computational power required for training over
time.

2.3.1 Context model size reduction

Exponential increase of model sizes

The link between model complexity and model size is significant. It is easy enough to understand the

relationship between these two notions. Model size is often measured by the number of parameters

(weights and biases). The more parameters a model contains, the more computing power it will

require to run through it. More computing power will also be needed for the training phase, as all

these additional parameters will have to be refined at each epoch, adding even more complexity.

However, the success of neural networks has diversified their applications. The complexity of

these new tasks has necessitated the design and use of more complex models. The trend has been

to increase the size of new models. The search for models to improve performance on existing tasks

has also pushed up the number of model parameters. For example, the first simple multi-layers

perceptron models in the early 2010s achieved an accuracy of around 97% for the classification

of handwritten numbers (MNIST dataset), with a trainable parameter count close to 100k. Today,
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the most powerful model achieves an accuracy of 99.87%, but the number of parameters in this

model exceeds 1.5 millions. [32]. There are many advantages to using larger models. Large models,

particularly in the realm of machine learning and artificial intelligence, have demonstrated the ability

to learn sophisticated features from vast and complex datasets [165]. This capability is crucial for

various applications such as natural language processing (NLP) [31]. Scaling up language models can

lead to emergent abilities that are unattainable with smaller models. These abilities appear in larger

models, enhancing the range of the model’s capabilities [282]. Staying in the realm of natural language

processing, the GPT-4 model, with a parameter count of around 2 trillion, can be used for a wide

range of tasks, including text writing, translation, question answering and content personalization.

The versatility offered by these large models means that we can use the same model for very different

tasks without major modifications.

Large models are also more robust when dealing with noise and variations in input data [299]. This

makes them more attractive for real-world applications where data can be unpredictable and noisy.

All the factors mentioned so far have encouraged the development of larger and larger models.

Although large models existed before, with AlexNet in 2012 and VGG in 2014, it was around 2018

that the size of deep learning models began to follow an exponential trajectory. The BERT model

proposed by Google in 2018 is made up of 340 million parameters, double the number of VGG

parameters introduced 4 years earlier. The following year, OpenAI presented a large-scale language

model with 1.5 billion parameters, multiplying the number of parameters by 4 in just 1 year. As can

be seen in figure 2.2, this exponential trajectory has continued until today, when the most advanced

deep learning models exceed a trillion parameters. These include OpenAI’s GPT-4, Google’s Switch

Transformers or Huawei’s Pangu-Σ. This has enabled the emergence of models that are trained with

very large scales of data, enabling them to generalize and serve as a common base and be adapted to a

wide range of downstreams tasks. This type of model is defined in [26] by the term foundation model.

A stagnation of DL models size

Despite all the solutions that have been put in place to meet the growing demand for computational

power, the computational power estimates required to build much more powerful models are far too
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high to continue to be sustained by increasing parallelism solutions alone. The cost of training models

is growing exponentially. The environmental and financial costs of supporting training are more than a

factor too great to contemplate [271]. Each additional dollar invested in a model increases performance

less and less [185]. For example, increasing the budget from 10 million to 100 million will improve the

model’s accuracy rate by 10 percentage points, from 65% to 75%. However, multiplying the training

budget by a further 10 times to 1 billion will only train a model with an accuracy of 80% [185].

There is a high probability that we will soon see the end of this escalation in size and training

costs for the very large foundation models [265]. This is why solutions and techniques that aim to

reduce model size while maintaining good performance are very interesting for absorbing part of this

problem.

2.3.2 Model compression techniques

A large number of solutions have been proposed to reduce the size of models and the number of

parameters. This section describes the main techniques used.

Quantization

Quantization is a process of reducing the accuracy of model weights by replacing original values

with approximations using fewer bits [141] while maintaining the model’s accuracy. This both

reduces the memory space required to store parameters and speeds up calculations thanks to mixed-

precision calculations [54] that are efficient on modern accelerators [166]. This solution is mainly

used when deploying large language models (LLMs), as they are costly to deploy and maintain [288].

Quantization is limited to the inference part, since model training requires precision that cannot be

achieved with a smaller number of bits. Quantization performance is subject to strong perturbations

due to outliers [283].

Knowledge distillation

Knowledge distillation is a technique used to reproduce the prediction of a very large model by a

smaller model, called a student model [126]. The small model will learn to mimic the behavior of
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the very large model. It is this student model that will be used for inference. This student model is

generally less efficient than the model it imitates, but it is much faster. This technique is useful for

large models that are too cumbersome to deploy, or for saving time in real-time applications where

low latency is required [99]. However, this technique has its limits, since the performance of the

student model can be altered by a variety of factors, such as the architecture of the student network

model, the dataset scale and the data domain [256]. All this can produce a significant gap in fidelity

between teacher and student model. Also, this technique is only intended to improve performance

during inference, not during training.

Low-rank factorization and optimization

Low-rank approximation is a mathematical technique aimed at approximating a high-dimensional data

matrix with a matrix of lower rank [153]. To realize this operation, we build at least two matrices

of small size, so that multiplication of these matrices gives a correct approximation of the original

matrix. This makes it possible to compress parameter matrices [238] and deploy LLMs on machines

with limited memory capacity. The low rank approximation of matrices also plays a very important

role in tensor decompositions [69].

The reference method for decomposition is the singular value decomposition (SVD) [258]. This

method gives the best approximation of a matrix [153]. The Eckart-Young theorem [62] demonstrates

that the k-rank approximation of the matrix with SVD is the closest, both with the Frobenius norm and

the spectral norm. SVD decomposes the matrix into three distinct matrices, at least two of which are

square, unitary and orthogonal. SVD is applicable to all types of matrices, not just square matrices.

SVD is an application to arbitrary matrices of the spectral theorem, which finds an orthonormal basis

of eigenvectors for diagonalizing a matrix.

Pruning

Pruning (or sparsification [242]) is the principle of removing a certain percentage of nodes in the

neural network. Pruning can be used during the training phase, but mainly to induce sparsity, improve

model generalization [91, 20] or prevent overfitting [16]. The pruning technique, designed to reduce

42



model size, is generally applied after training. We apply pruning to reduce the size of the model while

maintaining the same accuracy. By removing non-essential weights, we speed up model inference

and reduce memory consumption. But pruning requires a retraining cost that is not attractive when

dealing with very large neural networks. Modern solutions for applying pruning to very large models

have been proposed [264, 131]. The methods allow networks to be sparsified after training and are

compatible with a reduction in the size of the input dimension.

2.3.3 Dimensionality reduction strategies and embedding

Model input data can be very high-dimensional. However, a large proportion of the dimensions may be

redundant or not particularly informative, which will not be useful for the prediction or will complicate

the analysis and processing of the data. One solution is to get rid of this uninteresting data, and give

the input model only data that is of interest for its prediction. This is called dimension reduction. The

aim is to simplify the data by reducing the dimension in which it is represented, while preserving as

much essential information as possible. This reduces the need for computation and, if done correctly,

can improve model performance [278].

Principal component analysis (PCA) [143, 102] is one of the most widely used linear techniques

for dimension reduction. It is the reference method for projecting large data into a low-dimensional

space [207]. It works by maximizing the variance of the data in the lower-dimensional representation,

which often reveals the underlying structure of the data. It is widely used to propose clustering in

unsupervised tasks [55]. PCA is also used in others application as features extraction [178], face

recognition [291] or fault-detection [88].

There are other strategies for dimensionality reduction. The independent component analysis

(ICA) [46] is a technique similar to PCA but focuses on finding statistically independent components

in the data, rather than the components that maximize variance [138]. ICA is particularly useful for

applications where the goal is to separate mixed signals, such as in the case of blind source separation,

where the objective is to recover individual source signals from a mixture of signals [260]. It is

commonly used in signal processing, neuroscience and finance.

Linear discriminant analysis (LDA) [78] is another linear technique for dimensionality reduction,
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but unlike PCA, it is supervised. LDA aims to find a lower-dimensional space that maximizes the

separation between multiple classes of data. It works by maximizing the between-class variance while

minimizing the within-class variance, making it especially useful for classification tasks. While LDA

is effective for supervised classification problems, its applicability may be limited when dealing with

nonlinear data or when the assumptions of normality and homogeneity of variance are not met [76].

High-dimensional classification processing also remains a major problem [293].

Dimensionality reduction strategies are essential tools for managing and interpreting complex

datasets. The choice of technique depends on the nature of the data, the problem at hand and the goals

of the analysis. Some methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) [274]

will be specially designed for data visualization, while other methods such as Isomap [270] will be

used to capture the underlying manifold structure of the data, making them more suitable for datasets

with nonlinear relationships.

Even if embedding is not technically a dimension-reduction solution, its role in representing

high-dimensional data regularly leads it to modify data dimensions. Embedding is the process of

representing complex objects such as words, images, categories or graphs in a low-dimensional vector

space [290]. The aim is to build a vector that best represents the initial data. The role of embedding

is to build a representation that preserves semantic or structural relationships between objects while

reducing their complexity. More concretely, we need to find a good embedding that will project

initial objects that are close to each other in relatively the same place. If we take word embedding

as an example, a good embedding will produce vectors which are close in term of distance between

two words with similar meanings or used in the same context (e.g. the words dog and cat, are

relatively close and are often used in similar contexts since they are both pets, so we expect the vector

representations of these two words to be relatively close) and will distance words that have distant

meanings (the vectors representing the words dog and cat will have to be very different from the word

plane).

Dimension reduction and indirectly embedding both reducing the apparent complexity of the data,

while preserving the underlying information and relationships. Both are particularly useful in contexts

where the initial data is very large. It is the type of input data that differs. For dimension reduction,
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the input data is already numerical, whereas embedding focuses on non-numerical or discrete data,

such as categorical data encoded in the one-hot [115] format, or unstructured data, and we will look

at the different data structures in more detail in the next section.

2.3.4 Challenges in model size reduction

Reducing the size of DL models often leads to a trade-off between model accuracy and efficiency [42].

We have seen above that techniques such as quantization, pruning and knowledge distillation can

reduce the number of parameters and computations, but they may also degrade the model’s predictive

performance if not carefully implemented. Maintaining a balance between compression and accuracy

remains a major challenge.

Moreover, many model size reduction techniques require significant computational resources. For

example, many pruning solutions have outperformed random pruning [82, 118, 298]. However, in

order to obtain results that are efficient, these techniques necessitate extensive fine-tuning and iterative

processes. This significantly increases the computational power required and can have a major impact

on training time. There is a real challenge in finding a balance between the gain that such techniques

will bring and the additional computational cost they represent.

While there has been progress in automated machine learning [136] and neural architecture

search [304], automating the compression process while preserving performance remains difficult.

Many current approaches still require manual tuning and domain-specific expertise [292]. More

research is needed to develop adaptive, generalist and automated compression frameworks that work

across different applications.

2.4 Computational challenges in large-scale neural networks

As neural networks grow in scale, both in terms of model parameters and dataset size, they present

significant computational challenges. Training and deploying these models require vast amounts of

memory, processing power and efficient optimization techniques. Issues such as hardware limitations,

distributed training complexities and energy consumption become critical concerns. This section
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explores the key computational bottlenecks in large-scale neural networks and discusses strategies to

mitigate these challenges, enabling efficient training and deployment.

2.4.1 Overview of distributed and parallel computing paradigms

Distributed and parallel computing paradigms are fundamental to modern computational systems,

enabling efficient processing of large-scale tasks by leveraging multiple computing resources. These

paradigms address challenges related to performance, scalability and fault tolerance in various appli-

cations. This section provides an overview of the key paradigms in distributed and parallel computing,

highlighting their characteristics, advantages and use cases.

Parallel computing is a type of computation in which many calculations or processes are carried

out simultaneously. Large problems are divided into smaller ones, which are then solved concurrently,

often utilizing multiple processors or computers working together. There are two main types of

parallelism model: shared memory model and distributed memory model. A representation of these

two architectures is shown in figure 2.3. In the shared memory model, multiple processors share a

common memory space and communicate through read/write operations. In the distributed memory

model, each processor has its own local memory and communication occurs through message passing.

There are also hybrid models which combines both shared and distributed memory approaches with

multi-level architecture [83].

CPU CPU CPU CPU

Shared memory

(a) Shared memory architecture

CPU

Mem

CPU CPU CPU

Mem Mem Mem

Network

Message passing

(b) Distributed memory architecture

Figure 2.3: Parallel and distributed memory architecture.

There are many different types of computer architecture. In order to better understand the different

ways parallelism can be achieved in computer systems, the Flynn taxonomy [79] classifies architectures

into four categories: Single Instruction, Single Data (SISD); Single Instruction, Multiple Data (SIMD);
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Multiple Instruction, Single Data (MISD); and Multiple Instruction, Multiple Data (MIMD). An

example of SISD is a traditional sequential computer that processes a single instruction and single

data at a time. A SIMD is a system where a single instruction operates on multiple data points

simultaneously [198]. It is this architecture that is commonly used in modern accelerators. MISD

is a rare architecture where multiple instructions operate on a single data stream, often used in fault-

tolerant systems [48, 286]. Finally, MIMD is a system where multiple processors execute different

instructions on different data streams, which is the basis for modern multiprocessor and distributed

systems [11].

The term distributed computing refers to a system in which multiple autonomous computing nodes

communicate over a network to achieve a common computational goal. Unlike parallel computing,

distributed computing focuses on coordinating loosely coupled nodes, often with high fault tolerance

and scalability.

The main characteristics of a distributed system are the ability to easily add new computing nodes to

ensure scalability, a network connecting different nodes to communicate, share data and synchronize.

Additionally, there is generally decentralization with no specific node controlling the entire system.

Communications are slow overall. Even if performance improvements on networks are very impor-

tant, communications remain a time-consuming issue. Numerous low-latency network architectures

connect today’s largest supercomputers, such as Fat Trees [172, 220] or the hypercube networks [209].

This requires limiting communications between nodes. With all these new factors, it is complex to

compare different distributed implementations of an algorithm to determine which is the most effi-

cient. Especially as the performance of each implementation also depends on the characteristics of

the machine on which it will be deployed. Consider two implementations A and B to solve a problem.

Let’s assume that the A implementation requires more communication than the B implementation,

but in exchange requires fewer calculations. It will probably be more interesting to deploy the A

implementation on a machine where the computation nodes are connected by a high-performance

network, but it will be unsuitable for machines with a mediocre network. On such machines, it will

be preferable to use the B implementation.

These new computer architectures have necessitated a rethinking of programming models to in-
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corporate the new costs associated with them. The Bulk-Synchronous Parallel model [273] (BSP) is a

programming model specially designed to represent parallel and distributed computing environments.

It is a model that takes into account the communication and synchronization costs of computation

nodes, unlike popular PRAM models [81]. A wide range of actual distributed architectures can be

seen as BSP computers [177]. It consists of a set of processor-memory pairs that are considered homo-

geneous, i.e. all processors have the same computing capacity. These processors are interconnected

with a network that enables them to communicate with other processors. It is also assumed that there

is a global synchronization unit to perform a synchronization barrier.
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Figure 2.4: Illustration of a Bulk-Synchronous Parallel superstep.

A BSP program is structured as a succession of supersteps. A superstep is illustrated in figure 2.4.

These three main phases form the basis for calculating the algorithmic cost of an s superstep. The

cost of the first phase is the cost of the largest workload among all the processors. The cost of the

second phase is determined by the maximum quantity that can be send and receive from the processors.

Finally, the cost of the last phase is the cost of global synchronization. Noting wi the local workload

of processors i and hi the amount of communication associated with this same node, the algorithmic
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cost of a superstep s is defined by:

Cost(s) = max
0≤i≤p

(ws
i ) + max

0≤i≤p
(hs

i )× g + L

with p, g et L the BSP machine parameters fixed according to the machine’s technical specifications.

The total cost of the BSP program is the sum of the costs of each superstep Cost(s). Let S be the

number of supersteps in the program, the total algorithmic cost of the program will be:

Cost(S) =
S∑

s=1

Cost(s) (2.2)

and

Cost(S) = W +H × g + S × L (2.3)

with W =
S∑

s=1

max
0≤i≤p

(ws
i ) and H =

S∑
s=1

max
0≤i≤p

(hs
i ). BSP provides a clear and visual understanding

of the different costs that are specific to parallel and distributed architectures. It allows to compare

different algorithms for a given machine, thanks to an a priori analysis.

2.4.2 Scalability issues in a massively distributed environment

Scalability is a critical concern in massively distributed environments, where systems must efficiently

manage increasing workloads, data volumes and network complexities. There are a number of

challenges to take into account to ensure scalability in a massively distributed environment.

The first limitation to take into account is the decrease in efficiency as the number of compute

nodes increases. In the majority of computer programs, part of the calculations cannot be split up to

be parallelized on several calculation nodes. Amdahl’s law [6] is a formula that describes the potential

speedup in performance of a computational process when using multiple processors. By taking into

account that a percentage of calculations must be performed sequentially, Amdahl’s law highlights the

diminishing returns of adding more processors to a system when there are parts of the computation

that cannot be parallelized. This also highlights the importance of optimizing not just parallelizable
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tasks but also minimizing sequential dependencies [70].

As distributed systems grow, communication overhead increases due to the important number of

interconnected nodes [180]. High network latency and bandwidth constraints can lead to bottlenecks,

affecting response times and overall system performance [28]. Increasing the number of nodes

also increases the quantity of communications that must circulate over the network [241]. Network

congestion must be taken into account during the design phase to prevent it from becoming a bottleneck

that would hamper performance [224].

An increase of the number of compute nodes in distributed systems also increases the chance of

node failures [250]. Ensuring high availability and fault tolerance requires robust recovery mechanisms

and redundancy [156].

Ensuring an even distribution of workload across multiple nodes is essential for scalability. Im-

proper load balancing can lead to resource underutilization in some nodes while others become

overloaded [159]. Dynamic load balancing algorithms [4, 121, 162] or adaptive resource alloca-

tion [97, 189] are commonly used to address these challenges.

2.4.3 Parallel training: data parallelism and model parallelism

To use these parallel and distributed environments to train deep learning models, it was necessary

to define parallelism strategies before correctly distributing the workload over the different compute

nodes. The two dominant method are data parallelism [125] and model parallelism [51]. A schematic

representation of these two approaches is available in figure 2.5.

Data parallelism approach involves replicating the entire model across multiple devices while

dividing the dataset into smaller batches [158]. Each device processes a different batch of data

and computes gradients independently, which are then aggregated to update the model parameters

synchronously or asynchronously. Data parallelism is effective when the model fits within a single

device’s memory but requires faster computation.

The second partitioning strategy for deep learning model training is model parallelism. When

a model is too large to fit within a single device’s memory, it is split across multiple devices [41].

Different layers or components of the model reside on separate computation units and data flows
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sequentially or in parallel between them. Model parallelism is crucial for training extremely large

models, but comes with increased communication overhead [163].
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Figure 2.5: Model parallelism and data parallelism comparison with 4 computation nodes.

Instead of dividing data or model components, task parallelism assigns different operations or tasks

to separate devices [262]. This strategy is useful when different tasks have varying computational

requirements and can be executed independently. Task parallelism is often combined with data or

model parallelism in complex training pipelines to optimize performance further [71]. However, this

requires a good definition of the dependencies between tasks to ensure that this type of parallelism

works efficiently. For this, it is recommended to represent the model execution as a directed graph of

tasks, where edges denote dependencies between different tasks.

By leveraging these parallelization techniques, deep learning models can be trained more efficiently,

enabling faster experimentation and scaling to larger architectures. Depending on the model size,

hardware availability and computational needs, a combination of these methods is often the most

effective approach.

2.4.4 AI dedicated hardware architectures

The exponential increase of model sizes was possible because there was enough computing power to

support the cost. HPC has evolved over the last few years to support the ever-increasing needs of deep

learning models.

51



As we’ve already discussed in section 2.2.4, GPUs were initially used to accelerate the matrix

calculations of deep learning models. Since then, many companies have begun offering accelerators

specifically designed for Deep Learning tasks [229]. Nvidia was one of the first to introduce an

accelerator designed for deep learning and scientific computing workloads, with the launch of the

Tesla [33] series of cards. Google then entered the market with TPUs in 2015 [144], Huawei with

its Ascend [181] chips and Intel with its Gaudi [145] chips. Today, accelerators have become much

more specific, to meet different needs depending on the task in question. For example, Huawei’s

Ascend 910 accelerators are designed for model training. This is a time-consuming and intensive

processes, requiring enormous computing power and the ability to process very large quantities of data.

Ascend 910s are therefore designed to perform massively parallel matrix operations and are linked

by high-capacity buses to enable fast, massive communication [228]. The Ascend 310 accelerators,

on the other hand, are designed for inference. This is a process which is less intensive in terms of

computational power, but often has to be carried out in near-real time. These processors are therefore

optimized for low latency and high efficiency. Finally, there are accelerators like the Kirin 990 which

are also designed for inference, but on mobile devices. They are capable of processing small models

locally, to process photos for example. The focus on this type of accelerator is on energy efficiency

and relatively low manufacturing costs, as they are aimed at the general public.

2.4.5 Frameworks for distributed DL

Although the power of accelerators has increased significantly, other factors have helped to meet

the need for computations for deep learning tasks. AI frameworks have evolved significantly, pro-

viding more efficient algorithms and better optimization techniques. Among the most well-known

frameworks, we can mention Tensorflow [93], Caffe [142], PyTorch [213] and MindSpore [133].

The solutions proposed by accelerator manufacturers make the most of the hardware’s computational

power. In addition, the integration of these frameworks with advanced software libraries such as

CUDA [89] has facilitated the implementation and optimization of Deep Learning models, making

training and deployment processes faster and more efficient. Today’s AI frameworks are both easy to

learn and to use, with high-level method calls, and highly optimized. Consequently, the frameworks
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Figure 2.6: Simplified Davinci core architecture [139]. This is the chip architecture used in Ascend
boards. We can see a cube used to multiply two matrix blocks of size 16× 16 stored in buffers A and
B respectively. The result of the multiplication is 4096 arithmetic operations performed in a single
clock cycle. The cube massively boosts the performance of matrix operations, which account for a
very large proportion of Deep Learning operations.

are written in Python, providing a simple, flexible interface for the user [226]. These methods call low-

level methods written in C or C++, which are more suitable since they are several dozen times more

efficient. This integration is transparent to the user, offering powerful and efficient solutions for the

development of deep learning models without the constraints of less accessible low-level languages.

Additionally, the growing ecosystem of open-source AI frameworks has fostered collaboration and

innovation within the community. Researchers can easily share their work, reproduce experiments

and build upon existing models, accelerating the pace of advancements in the field. These frameworks

often come with extensive documentation, tutorials and community support, making it easier for

newcomers to get started and for experienced practitioners to deepen their expertise.

Sparse linear algebra can thus be efficiently processed by known scientific tools like PETSc [13]

and Trilinos [123]. These frameworks are very powerful tools and provide solutions for sparse linear

algebra in a distributed environment. However, the storage format of these libraries is very rigid and

quite heavy for re-implementation, and very expensive to adapt to a DL framework. Solutions like

cuSPARSE [203] can take advantage of hardware architecture and allow to perform sparse matrix
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operations on accelerators in a very efficient way.

The main AI Frameworks such as TensorFlow GNN2 and PyTorch Geometric3 rely on libraries

supplied by accelerator manufacturers to perform sparse matrix operations on this hardware. The

most popular is NVIDIA’s cuSPARSE [203] library. This library is highly optimized for performing

matrix operations with sparse matrices on GPUs. It provides a suite of basic linear algebra subroutines

specifically designed for sparse matrices.AI frameworks use the functionalities offered by this library

through an API. This ensures that operations are correctly optimized for GPUs, but limits the scope for

frameworks to implement more operations or support more formats. They are limited to storage formats

that are implemented and supported by cuSPARSE. It has been shown that the ELLPACK format is the

most efficient for performing matrix operations on GPU [134] when the number of non-zero elements

per row is sensible and evenly distributed. However, none of the AI frameworks supported this sparse

matrix storage format, as it was not implemented in cuSPARSE. Furthermore, hardware manufacturers

are not necessarily developing methods to make the library suitable for distributed use with multiple

accelerators. Managing data distribution between accelerators and keeping the advantages is still a

research topic.

As for other specific AI accelerators, they generally deliver optimized solutions for dealing with

sparse matrices and operations. They come with specific frameworks designed to make the most of

hardware accelerators. However, these accelerators are primarily designed for highly efficient, dense

matrix multiplication. Sparse matrix storage formats do not offer the data parallelism required to take

full advantage of these accelerators, which limits performance. The irregular memory access patterns

are the main cause of the performance limitation [10]. Solutions and specific storage formats have

been proposed to adapt to the specific characteristics of Multiply-and-Accumulate accelerators, such

as Google’s TPU [117, 170]. Generally speaking, the accessibility and visibility of methods deployed

within these frameworks is limited, and manufacturers restrict the dissemination of implemented

solutions and optimizations.

2https://github.com/tensorflow/gnn
3https://github.com/pyg-team/pytorch_geometric
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2.5 Conclusion

The field of parallel and distributed computing for deep learning is becoming increasingly important

due to the ever-growing demands of very large neural networks. Despite the significant advancements

that have been mentioned, major challenges remain, such as reducing model size and computational

costs.

Matrix computation plays a fundamental role in deep learning, serving as the backbone for efficient

neural network operations. As deep learning models continue to scale in size and complexity, inno-

vative algorithmic methodologies are essential for reducing model size without compromising perfor-

mance. Techniques such as matrix factorization, pruning, quantization and dimensionality reduction

have demonstrated significant potential in improving computational efficiency while maintaining ac-

curacy. Dimensionality reduction methods such as PCA help to eliminate redundant features, reducing

memory usage and speeding up training and inference. However, large-scale neural networks still pose

considerable computational challenges, including memory constraints, high energy consumption and

latency issues, necessitating further advancements in optimization techniques and hardware acceler-

ation. Future research should focus on developing more adaptive and hardware-aware solutions to

enhance scalability and efficiency in deep learning, ensuring that computational advancements match

the growing demands of AI applications.

Building on this state of the art, this thesis proposes new methods for optimizing the training of

very large models in distributed environments. By focusing on algorithmic efficiency, sparse data

optimization and effective parallelization techniques, this thesis aims to contribute to addressing some

of the cited challenges regarding scalability, algorithm optimization and computational efficiency. The

following chapters will build on these foundations to introduce new approaches for improving model

accuracy, optimizing the use of distributed resources and reducing model complexity.
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Chapter 3

Innovative Dropping Strategies for Improved

Graph Neural Network Accuracy

3.1 Introduction

Graph applications cover a very wide range of domains, from social networks that map out connections

between friends, to recommendation systems that suggest products based on user preferences. Graphs

are also used in logistics to optimize delivery routes, in biology to understand protein interactions,

and in cybersecurity to detect and prevent threats. The versatility and power of graph applications

make them an essential tool in various industries, driving innovation and efficiency. Graphs are one

of the most common forms of non-Euclidean data. The term non-Euclidean refers to the fact that data

cannot be represented in a Euclidean space. In Euclidean space, the shortest path between two points

is necessarily a straight line. However, the distance between two nodes in a graph is not necessarily

equal to the distance between their coordinates in an Euclidean space [149]. A graph is defined as

a triple composed of a set of vertices (also called nodes), a set of edges and a relation table that

associates two vertices with each edge [285]. If the edge is directed from x to y, x the tail of the edge

and y the head of the edge, x and y together are named the endpoints of the edge. In this document,

all the graphs we will be manipulating or discussing are finite. A graph is finite if its vertex set and

edge set are finite.
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Indeed, the graph is a fairly instinctive way to represent relationships between different entities

(figure 3.1). However, it remains a different data structure that needs to be handled accordingly.

As graphs are non-Euclidean data, they cannot be represented in Euclidean space without a loss of

information. Specific algorithms and methods must therefore be found to handle this type of data.

This is also the case with deep learning models, where we find and use models specially designed to

handle this type of data.

1 2

3

4 5

6 7
Figure 3.1: Example graph with 7 nodes and 18 edges.

There are many fields and applications where data can be found in graph format. The first area that

comes to mind is social networks and all methods around social network analysis. Graphs represent

interactions between users, groups or content. Community detection [80], link prediction between

individuals [72] or influence maximization [40] are common applications where relationship graphs

are at the heart of the problem. Other applications are related to the diffusion of information [230].

This field is concerned with the way in which data propagates within the social network. For example,

the structure of the graph representing the diffusion of information in the social network is a very

important point in determining the veracity and the viability of the information [95]. Propagation

prediction is also used in other fields, such as epidemiology, to analyze the spread of disease or

viruses [146, 184].

Recommender systems operate with graph data [108]. The user-item interactions are represented
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in the form of a graph. We need to be able to correctly analyze and process this graph to make

predictions of items for a user that are relevant relative to the item he or she has already consumed.

The same is true in the field of NLP, where words, phrases and documents can be represented in the

form of graphs, helping to represent the semantics and similarities of these objects for translation or

document classification tasks.

The graphs are also a natural way of abstractly representing different locations and routes from

one place to another, by associating weights to represent the distance or time separating these points.

Graph neural networks (GNNs) can be used for route prediction delivery task [284]. And last but not

least, graphs are also a natural representation of molecules. They are therefore at the heart of numerous

methods in chemistry and bioinformatics for predicting molecular properties or protein structures.

GNNs play a very important role today. It does not only analyze the graph data itself, but also the

data connectivity of the graph. The quality of a GNN is thus altered by the result of extracted graph

structure information. The extraction could be enhanced by GNN model design or directly from the

training dataset with a GNN-decoupled method.

In this chapter, we propose RankedDrop, a new sampling method to improve the extraction of graph

structure information. This method is based on dropping-out technique, and it adopts a spatial-aware

selection of edges to drop. It takes into account structure information of the graph to control the

dropping-out, and its random selection of edges to be dropped is under the control of a probability

generated with respect to graph’s topological importance. Our experiments point out that RankedDrop

provides high-quality and robust training results compared to the leading solutions. Furthermore,

RankedDrop could be a framework plugin and combined with other GNN model improvements to

maximize GNN quality.

3.2 Graph neural networks

Graph neural networks are deep learning models specifically designed to manipulate non-Euclidean

data structures represented by graphs. There are several main categories of GNNs, with different

approaches and strategies for manipulating graphs.
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According to [287], the different types of GNNs can be classified into four main categories: the

recurrent graph neural networks, the convolutional graph neural networks, the graph autoencoders and

the spatial-temporal graph neural networks.

3.2.1 Recurrent graph neural networks

Recurrent graph neural networks (RGNNs) [140] extends the application of recurrent neural networks

to graphs. Recurrent neural networks are models used to process sequential data. They are used in

applications with temporality or a succession of states, such as the traffic prediction [35]. This was the

first approach explored for dealing with graphs. These methods assume that graph nodes propagate

information with their neighbors until they reach a stable equilibrium [287].

3.2.2 Graph convolutional neural networks

Graph convolutional networks (GCNs) [151] are neural networks that apply convolution operations to

graphs. GCNs exploit graph structure to aggregate information from neighboring nodes and update

node representations based on received and its own information in an interactive way. Convolution

on graph-structured data is defined by the application of a convolution filter on the data received

by neighboring nodes. This is a very popular type of model. This is a very large family of neural

networks. They are very efficient for node classification. The attention mechanism has also been

generalized to graphs with the graph attention network (GAT) [277]. The attention operator has been

incorporated into the information propagation phase.

3.2.3 Graph autoencoders

Graph autoencoders (GAEs) [279] are models that learn to build representations of data structured as

a graph in a low-dimensional vector or matrix space. GAEs are used to learn how to embed network

information and network content. Architecture varies according to methods and models, but in general,

there are two main components. The first is the encoder, which takes the graph and tries to capture

the topological information of the graph’s features to build a representation in a smaller dimension.
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The second is the decoder, which uses the representation to try to reconstruct the graph as closely as

possible to the original, while minimizing error. The objective when training this type of model is to

minimize the difference between the original graph and the graph reconstructed from the embedding

data. These models are used in graph generation to construct graphs with defined properties.

3.2.4 Spatial-temporal graph neural networks

Spatial-temporal graph neural networks (STGNNs) [297] are models specially designed to deal with

dynamic graphs, i.e. graphs in which the attributes are dynamically modified over time. This is a

specific type of graph that we will not be dealing with in the rest of this chapter.

Our investigation focus more specially on GCNs because of their widespread success in various

applications.

3.3 Challenges in deep learning graph applications

The GNN backbones used today are built around a layer-wise propagation rule with similar baseline

between the methods. They can by synthesized by

H l+1 = ϕ(ÃH lW l) (3.1)

where H l is the embedding matrix representing the l-th graph layer output, W l is the weight matrix

for the l-th layer and Ã is the modified graph adjacency matrix. These backbones offer interesting

performances and have already shown their efficiency. However, this approach, called spectral, is

really subject to the quality of the graph due to the fact that Ã is at the core of the method and is

included in each layer. It is notably what limits the use of these networks with a large number of

layers. Beside that, the attention-based spatial approaches allowed to obtain good results by focusing

on an approach to reduce the noise of the graph by manipulating the weights of the neighborhood

nodes to control the diffusion of the information in the graph. The sampling phase that can be done

on the GNNs allows to influence this point as well. By modifying the adjacency matrix in this
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way, the propagation of the data is less important and the performances can be improved when these

modifications are done randomly [23, 231]. It is possible to use this improvement to go further by

exploring the structural information of the graph to guide the selection phase. The dropping approach

to modifying the adjacency matrix also represents an advantage in terms of execution time. Dropping

reduces the number of non-zero elements nnz, which reduces the cost of matrix operations since the

complexity of matrix multiplication is O(n× nnz) with the main sparse storage formats.

The graph’s structure contains a lot of information, which is why graphs are not reducible to a set

of input perceptrons as with more classical data like images. Because of the irregularity of the data,

the possibilities with non-Euclidean data are limited compared to other domains of deep learning that

focus on more classical data. The main goal of GNNs study is to make an inference by capturing the

network structure as well as node attributes [132]. We saw earlier that the GNNs place the structure at

the heart of the methods, which requires a high-quality representation of the relationships between the

nodes. The problem is that the quality of the graph structure is not easy to control. The structure of the

graphs chosen to represent the data is not absolute. This quality can be altered by many factors: lack of

information during data recovery, partially erroneous data, a preprocessing that removes information

from the graph structure, etc. This imperfection can be represented as noise that interferes with the

propagation of information. The problems caused by this noise become more important as the number

of GNN layers increases. Indeed, the larger the depth of the GNN, the higher the noise propagation.

This limits the performance of current implementations [302]. The sampling modules aim to improve

the quality of the graph structure to enhance the propagation of information.

3.3.1 Scalability issues

Like many deep learning applications, the scalability of graph neural networks is a major challenge.

The very large size of datasets means that the adjacency matrix associated with the graph has to be

stored and manipulated as a sparse matrix. Otherwise, the memory costs for storing the adjacency

matrix would be inordinately high. This requires matrix multiplication between sparse and dense

matrices in a massively distributed environment. We will explore matrix multiplication sequences

with sparse and dense matrices in more detail in section 4.4.
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Load balancing is also a major challenge. To reduce communications, it is possible to visualize

the processing of a neural network graph as sequential operations to update each node of the graph

and communications phases to propagate information with neighboring nodes. The load-balancing of

nodes between machines requires complex algorithms that are able to slice the graph into sub-graphs

to minimize inter-sub-graph communications so as to limit communications between computing

machines.

To meet scalability requirements, we have to adapt and propose new methods and algorithms well

suited to distributed environments.

3.3.2 Oversmoothing

Oversmoothing refers to the phenomenon of smoothing predictions and representations of graph

nodes when the number of network layers starts to increase [36]. Node features become similar to

each other, which has a significant negative impact on model performance. With most GCNs, the best

performance is obtained when the number of layers is low, 1, 2 or 4. The performance of these types

of models dramatically decreases when more layers are added.

GCN model is actually a special form of Laplacian smoothing [179]. This phenomenon is directly

linked to the propagation of information. The graph is used as a pattern to propagate information

between nodes. At each layer, the model propagates this information to its neighbors and then updates

these features with the information it has received. But at the next layer, the information distributed by

the node is the result of aggregating the information from its neighbors, so it will broadcast information

that is already a mixture of all its neighbors, and will update itself to take into account the mixture of

its neighbors that has just been sent to it.

For a number of applications, the maximum distance between two nodes is very small. Milgram

showed in an experiment that, in a very large population, the number of intermediaries between two

random people is very low [272]. This work has shown that in the majority of cases, the number

of intermediaries is less than 7 [197]. It is easy to understand why oversmoothing occurs. If the

maximum value of the shortest path problem is less than the number of nodes [208], each node has

received information from all the nodes in the graph. All values will therefore tend to converge towards
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similar values.

3.3.3 Overfitting

Overfitting refers to excessively specific training of the model on the training data. The model captures

noise and details too specific to the training dataset, so that when the model is used once trained, it is

unable to generalize to new data.

Graph neural networks are very prone to overfitting. Since graphs are used as propagation

structures, the same pattern is always used for propagation. This can hinder generalization with data

other than the training data.

That’s why we soon suggested varying the graph during training, so that propagation wouldn’t

always follow the same pattern. Changing the structure of the graph is an excellent way to vary the

data during training. By creating a different subgraph at each epoch, the GNN can train with different

graphs at each iteration. Many solutions have been proposed, and we will look at them in the next

section.

3.4 Method sampling: overview of different strategies

Sampling methods with adding information are very rare because in general, it is complicated to create

information in the graph without taking a great chance on the consistency of the information. [92] is

one of these rare solutions to be effective in this field. It adds extra nodes to the graph to allow long

range interactions between nodes. The experiment results show that not limiting propagation to direct

neighbors is efficient. Taking an interest in the global structure therefore seems to be an approach with

potential.

Sample and aggregate methods like GraphSage [111] were introduced in an early stage of the

evolution of GNN to leverage node’s neighbor information by an aggregator. The aggregator collects

the topological structure of each node’s neighborhood and the distribution of node features during the

learning process. These methods use predefined aggregators to decide node dropping. The choice

of aggregator used is a hyper-parameter that makes the training a difficult task. They also suffer
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quickly from the growing layer size. Moreover, the coupling between sampling and learning limits

the evolution of GNN.

One possible approach is to design a method that uses the output of the GNNs during training

to control dropping, which would allow dynamic control of sampling. NeuralSparse [301] separates

sampling and learning by using a dedicated sparsification deep neural network for the selection

of dropping. Therefore, NeuralSparse samples subgraphs before applying GNNs can be coupled

with different backbones to improve the performance. However, designing a sparsification network

significantly increases the GNN learning complexity. The robustness and realisticness of such a

method are still understudied.

Relying on the topology of the graph to direct the sampling is a good way to obtain good results

in terms of accuracy. In the paper [300], Zhao et al. introduce GAUG, a method which uses data

augmentation techniques to eliminate graph noises before or during a GNN training. GAUG includes

an edge predictor to compute edge probabilities for all possible edges in the input graph. Similar to

NeuralSparse, the edge predictor is a GNN. Significant computation power and learning complexity

are required.

DropEdge [231] is a dropping method that generates a different subgraph at each epoch during

GNN training. This approach of data preprocessing prevents oversmoothing, the backbones can train

on many different subgraphs which would be the case with validating. This method, as well as other

sampling approaches like DropGNN [211], use randomness. It is a simple but efficient way, to sample

the input graph which requires less learning complexity and computation power than NeuralSparse

and GAUG but have higher flexibility and performance than GraphSage and PinSage. However, these

random-dropping methods do not take into account the topological information of the graph and drop

different edges/nodes in a similar random way. A low-complexity, efficient and not just based on

randomness high-performance solution is desirable for making GNN industrially applicable.

Methods have been proposed to take into account the graph topology in GNNs. Personalized

PageRank has been used to manage the propagation phase of the information from the nodes in

the neighborhood [25]. These methods provide solutions for using the personalized PageRank to

manage the propagation in the graph. This approach tends to separate prediction from propagation,
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which permits good scaling of the method but does not allow the use of graph structure information

for training the model. Yang et al. [294] proposed another approach to control message-passing

propagation with masks that filter the propagation strength to label-scale instead of edge-scale. By

comparing the proximity of the labels of two neighboring nodes, a propagation strength is calculated

for each label thus decreasing the level at which the propagation is managed. However, the accuracy

obtained with this method and the additional complexity added to the model do not allow today to

consider going down to the attribute level for propagation control.

3.5 Extract graph topology information

Many applications such as web search, recommendation systems or academic paper ranking need to

classify the nodes that compose the graph according to their importance. In this context, we need to

find a way of building a ranking from the information available in the graph. The graph’s topology

is an important source of information, but we still need to be able to extract information about the

topology. The vast majority of metrics rely on the edges between nodes to calculate their structural

significance and rank them in relation to one another. The graph link structure is used to classify

graph nodes. We call these algorithms Link Analysis Ranking algorithms.

A Link Analysis Ranking algorithm is defined in [27] as a function that maps a graph G to a real

vector of weight. In other words, this algorithm assigns one and only one numerical value to each

node in the graph, representing the node’s importance. The different nodes are compared according to

the assigned values, so that the importance of one node is greater than another if the numerical value

associated with it is higher.

Various centrality measures quantify a node’s importance: the degree centrality classifies nodes

according to the number of node connections, the betweenness centrality quantifies how often a node

lies on the shortest path between other nodes and the closeness centrality reflects the average distance

from a node to all other nodes.

Centrality measures provide a highly local perspective, ignoring global network properties. In

order to extract and rank nodes from their global importance, we will use algorithms able to uncover
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hidden structures and prioritize relevant information.

3.5.1 PageRank

In 1998, PageRank is initially an algorithm that was developed for ranking web pages [30]. Internet

becoming larger and larger, the goal was to propose a solution to present the most relevant results

to the user according to their searches. This method has revolutionized the search engines that were

until then not very relevant while having a limited automation. It is the efficiency of this algorithm

that will permit Google to quickly impose itself in the world of search engines and to become the

giant that it is today. The idea behind this algorithm is to use the hypertext links of the Web pages to

build a graph representing the links between the various Web pages. The idea is to use robots, called

web crawler, which will continuously explore the Web to update the graph and collect information

about the web pages content. Each node of the graph represents a web page and the edges, which are

directed, represent the pages towards which point each of the pages. Already in 1996, the Internet was

composed of more than 250,000 websites, and therefore even more web pages. But how to exploit the

graph and the associated information to determine the relevance of each page?

This is where the PageRank will be used, it will allow to associate a score to each node of the

graph. This score shows the relative importance of each page. The score will propagate in the graph

and the score of a web page is directly influenced by the score of the pages that point to this page. The

more the set of scores of the pages that point to a page is important, the more the score of this page

will be important. Other parameters are also taken into account, such as the fact that pages that are

composed of a large number of hyperlinks will give less importance to the pages to which it points.

One of the great strengths of PageRank is that the ranking of the relevance of a page is pre-

calculated independently of the query, which is not the case with HITS and SALSA, two methods that

we will see later. This allows the search engine to simply select the pages related to the user’s query

and display them according to their scores, thus reducing the response time.

The sequential version of the PageRank algorithm is presented in the algorithm 1. We only focus on

the implementation from the power iteration approach, an algebraic method to compute the PageRank

exist but will not be discussed in this document [280].
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Algorithm 1 Serial PageRank algorithm implementation.

Input: A the adjacency (sparse) matrix, δ precision, β coefficient
Output: v vector of

PageRank score of size n
Initialisation :

1: sum← 0
2: err ← INF
3: new vector t of size n
4: assign 1

n
to each element in v

START
5: while err > δ do
6: reset all element of t to 0
7: t← SpMV between A and v
8: for each elem in t do
9: elem← β ∗ elem+ (1− β) ∗ 1

n

10: end for
11: err ← norm between t and v
12: v ← t
13: end while
14: return v

END

3.5.2 HITS

Hypertext Induced Topic Search (HITS) have been proposed by Kleinberg [154]. It is an iterative

algorithm that is used to rank web pages, like PageRank. This method is based on the following

postulate. There are two different types of web pages: Some of them have the purpose of giving

access to content (authoritative) while the other pages have the purpose of grouping a set of links to

content pages (hubs). HITS will try to give each page an authoritative score and a hub score, in order

to be able to rank them later on. Each page will therefore have two scores, unlike PageRank where one

score was associated with each node. A page will have an important hub score if it links many pages

with a high authority, on the contrary, a page with authority will be more important if it is referenced

by many hub pages. The authority scores are therefore calculated from the hub scores and vice versa.

Unlike PageRank, HITS applies to a set of web pages that are related to the query. HITS first

requires you to build a subgraph with only those pages that are related to the user’s query. This allows

to have a calculation cost much less important than the PageRank but does not allow to make these
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calculations in advance. This makes HITS slower than PageRank to obtain page rankings. To reduce

the computational load for each query, optimizations are often used, such as considering all web pages

of a site as a single element. Thus reducing the size of the graph.

Algorithm 2 represents a sequential version of the HITS algorithm. We can clearly see the two

loops that update the authority and hub scores.

Algorithm 2 Serial version of HITS.

Input: A the adjacency (sparse) matrix of size n,
Output: hA vector of hub score of size n, aA vector of authority score of size n

Initialisation :
1: initialize all hA and aA values to 1

START LOOP
2: while the weights did not converge do
3: for every hub i ∈ aA do
4: aA(i)←

∑
j∈B(i) hA(j)

5: end for
6: Normalize aA

7: for every hub i ∈ hA do
8: hA(i)←

∑
j∈F (i) aA(j)

9: end for
10: Normalize hA

11: end while
12: return hA, aA

END

3.5.3 SALSA

The SALSA algorithm was introduced in 2001 [173]. It is another page ranking algorithm which is a

mix between PageRank and HITS.

As Hits, SALSA is a method which focus on a sub-graph which is topic dependent. This sub-graph

is obtained by selecting only the pages related to the query. SALSA is therefore used on smaller

graphs. Salsa can extract for each page a score of authority and hub

With the HITS method, the computation of the authority and hub scores was linked to each other.

SALSA allows to compute both score vectors independently. The graph is transformed into a bi-partite

graph. Concretely, the method starts by constructing two distinct matrices and then random walks
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are computed on these two matrices to obtain the authority and hub scores [27]. The goal here is

to find the dominant eigenvector of each matrix to calculate the importance of each page in the two

categories. It is this step that refers to PageRank when Salsa is defined as a method that mixes both

PageRank and HITS.

The sequential approach to compute the SALSA algorithm is given in the algorithm 3.

Algorithm 3 Algorithm to get the SALSA authority and hub score.

Input: A the adjacency (sparse) matrix of size n, δ precision
Output: hA vector of hub score of size n, aA vector of auth score of size n

Initialization :
START LOOP

1: Ar ← the matrix A where each nonzero element of A is divided by the number of non-zero
values in the row

2: Ac ← the matrix A where each nonzero element of A is divided by the number of non-zero
values in the column

3: Ã← AT
c Ar

4: H̃ ← ArA
T
c

5: aA ← random walk on Ã matrix
6: hA ← random walk on H̃ matrix
7: return hA, aA

END

3.6 Proposed improvements by topology sampling

We introduce in this section RankedDrop, a sampling selection method based on extracted graph

data. This allows to build subgraphs from the original graph to improve the training of GNNs

on these datasets. This method and the experiments results has been published in an international

conference [218]. It is an advanced sampling solution to take into account the topology of the graph

during sampling. We propose a solution to control and frame the randomness in dropping. Based

on topological information extracted from the graph, RankedDrop allows to obtain subgraphs that

are topologically close to the original graph. Randomness is still inherent in this sampling approach,

but the selection probability that RankedDrop assigns to the nodes ensures that it is used as a control

framework to maintain consistency between the structure of the original graph and the generated

70



Selection probability

Dropped Subgraph

Original graph

CCCCCCCCCCCCC

Graph level score

CCCCCCCCCCCCC

Final score

CCCCCCCCCCCCC

Node level score
Topological

data
extraction

Node selectionEdge selection

Score
fusion

Scan With
Add

Figure 3.2: Overview of the RankedDrop sampling method to pass from the original graph to the
dropped subgraph.

subgraph. At each epoch, a new sub-graph is used to vary the input data to train the model on similar

graphs. An overview of the method is presented in figure 3.2, the different steps are presented in this

section. The algorithms 4 and 5 summarizes the different steps that we will see next.

3.6.1 Information extraction

The first step is the extraction of data from the original graph. In order to make it easier to understand

how the method works, we will separate the data extraction phase from the sampling phase, and we

will discuss the data extraction in more detail in the section 3.7.1. For the moment, we assume that

we have extracted an important set of data about the structure of the graph.

The data that is extracted from the graph should reflect the importance of the nodes in the graph

structure. Data describes around which nodes the graph is structured. Not all nodes are equal with

respect to the place they occupy in the graph. The approach proposed here is to merge the different

features of the structure into a final score vector which will attribute to each node a smaller or larger

importance and will make it possible to reflect the disparities between the nodes. Thus, the more

71



important a node is, the more important its score in the score vector will be.
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Figure 3.3: Scan with Add vector values for the Cora dataset. The orange curve represents the values
when the final score values are sorted in descending order before applying the Scan with Add. In
practice, there is no need to sort the values. However, for the sake of understanding and comparison,
we will present the curves in this configuration.

The goal is to generate coherent subgraphs with respect to the original graph but which are different

at each epoch. The use of randomness controlled by the topological information of the graph in the

method has two advantages (1) the input graph varies and perturbations created at each epoch help to

reduce overfitting. (2) There is no loss of information due to sampling, the graph is exploited in its

entirety due to the fact that each node will have a non-zero probability of being selected. We opted

to use probabilities to introduce randomness to generate different subgraphs from the extracted graph

data. Randomness will direct the sampling and have different subgraphs but close to the original one.

We have chosen to use the Scan with Add (a.k.a prefix sum, [22]) in our application to transform

the score vector of the nodes into a probability distribution. The Scan with Add operation creates a

new vector such as that each element corresponds to the successive partial sum of the elements of the

original vector, taken in a decreasing order : i.e. from an array v composed of n elements, it builds

an array s also of size n such that
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∀i ∈ [0, n− 1], si =
i∑

j=0

vj (3.2)

In our application, the vectorv corresponds to the score vector of graph nodes, which was computed

from the extracted graph topological information. An application example is shown in Figure 3.3.

This method is widely documented and there are powerful distributed algorithms [125]. The selection

probability result of this operation continues to illustrate the relative importance of the node which

was described by the final vector of scores. But it also controls the selection of nodes: The greater is

the difference between elements i and i+1, for i ∈ [0, n− 2], the higher is the probability of the node

i+ 1 to be selected.
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Figure 3.4: Variation of the Scan With Add (SWA) vectors for Cora, Citeseer and Pubmed datasets
for local structure with degrees and global structure with PageRank. All the values of the array are
presented in percentage on the x-axis. The y-axis represents the value corresponding to the index in
the Scan with Add array.

In concrete terms, the selection probability is a vector. It is composed of a set of positive values

such that ∀i ∈ [0, n− 2], the element i of the vector is less than or equal to the element i+ 1 and the

last value of the vector is equal to 1. We thus obtain a probability interval which will be exploited to

select the nodes for the sampling phase. Figure 3.4 represents graphically the Scan with Add vectors
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that are obtained for different datasets in degrees and PageRank topological data, we will detail in the

section 3.7. These curves represent the distribution of the values in the array. For comprehension

reasons, the score values have been sorted in a decreasing order to better visualize the differences

in score distributions. The distribution curves that are obtained during application look more like

the unsorted curve in figure 3.3. The slope of the curve informs us about the distribution of the

selection probabilities. Two annotations have been added around the curve of the Scan with Add of

the PageRank for the Cora dataset. On the x-axis these annotations are located at 5 and 10 percent.

What we can see from these annotations is that the top 5 percent of the nodes share 63 percent of the

score, and the bottom 10 percent of the score shares 85 percent of the total score. This means that

the selection of the node on the whole graph has an 85% chance of finding one of the nodes which

happens to be among the 10% of the best rated. We can clearly understand on this figure that the nodes

that are the best rated have a higher chance of being selected, and this probability will be stronger

as the slope of the curve varies along the value. However, we can see that the less well rated nodes

keep a probability of being selected. This probability will increase when some nodes are completely

explored and the probabilities will be redistributed according to the remaining nodes.

3.6.2 Dropping selection

We based the proposed method on the idea of building a sampling phase that takes into account the

information about the structure of the graph and also that allows to build different subgraphs with

a similar structure to the graph. For the second part, we have to select the edges that will be part

of the subgraph. The selection of the edges will go through the selection of the nodes based on the

probability control that will be calculated so far. We will detail this selection in this part. Although

our approach is a dropping method, our implementation leads us to build the subgraph. This means

that we select the data that will be added to the subgraph. The dropped data is therefore the data that

was not selected during the generation of the subgraph. The algorithm 4 summarizes the different

steps that we will describe below.
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Algorithm 4 Subgraph generation algorithm.

Input: s the Scan with Add vector, p the desired edges ratio compared to the graph G, l list of
edge-node association, m is the number of edges composing the original graph G

Output: Subgraph G̃ generation
1: G̃ ← empty
2: while G̃ length ≤ p×m do
3: r ← uniform random pull in ]0, 1[
4: n← select the node associated to r in s such as sk−1 ≤ r ≤ sk
5: e← select randomly one edge associated to node n in l
6: Add e in G̃
7: end while
8: return G̃

Node selection

The selection of nodes is guided by the probability distribution we constructed earlier. To select a

node, we will first draw a random number in a uniform way between 0 and 1 noted r. Let s be the

output vector of the scan with Add and sk and sk the kth element of this vector, the next step is to

determine k such that

sk−1 ≤ r ≤ sk (3.3)

Thus, it is the node k that is selected for the next step of the operation. Note that the array s is

increasing, so it is possible to use linear research algorithms to improve the performance of this phase

(for example, the binary search can reduce the complexity to O(log n)). By selecting nodes in this

way, we ensure that nodes with higher scores have a greater chance of being selected because they

represent a larger range over the set of possible values of r. At the same time, the less important nodes

still have a chance to be selected but with a lower probability, ensuring that the generated subgraphs

will be different from one epoch to another.

Edge selection

The choice of the edge to be sampled from the selected node requires to associate each edge of the

graph to a node to have a list of edges associated to each node. The creation of this list can be done in

advance, as the same list will be used during all the training. This list is called edge-node association
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in the algorithm 4. Edges can either be associated with the tail or the head of the edge. An edge is

only associated with one node. The length of this list is therefore equal to the number of edges in the

graph. If it is an undirected graph, it must be considered as directed, and each directed edge must be

associated with the endpoints of the chosen edge. The goal is to build the subgraph’s adjacency matrix

so that it can be used in the next training epoch. We have to focus on the selection of the non-zero

values that will be kept in this matrix. This is equivalent to selecting the edges that will be used to

build the submatrix and this list of edges will be used to build it.

3.6.3 The RankedDrop algorithm

Algorithm 5 RankedDrop general algorithm.

Input: G the original graph, nn the GNN model, the number of epoch e
Output: The trained GNN model

1: e← Data extracted from G
2: v ← compute final score vector (e)
3: s← Scan with Add of v
4: for i in 1 to epoch do
5: Gi ← Algorithm 4 //Subgraph generation
6: train nn on the graph Gi
7: end for
8: return nn

We summarize the proposed method in the current section. For this purpose, we rely on the

algorithm 5 which synthesizes the whole method. The first step is to extract data from the original

graph at line 1. The aim is to extract data to represent the topology of the graph. One or more data

based on different approaches can be extracted and used to build a final score vector. This normalized

vector stores a unique value for each nodes in the original graph. The value associated with each node

in this vector is intended to represent its importance in the graph. This final score, compute at line 2

in the algorithm, is used to build the selection probability thanks to the Scan with Add at line 3. All

the previous steps are to be done only once per graph and we have explained more in detail these steps

in the section 3.6.1. From the line 4, we will construct a subgraph for each epoch. Therefore, we run

the algorithm 4 which return a subgraph of the original graph according to the topological importance

of nodes. This importance is represented by the selection probabilities that we have calculated. In the
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algorithm 4, we use a random draw, in the line 3, to select a node in the Scan with Add result vector

and then, we select one edge associated with this node and we append this edge to the subgraph (line 6

in the algorithm 4). The selection of a node and an associated edge is repeated until the subgraph has

the required size. The generated subgraph will be used for this epoch when training the GNN. The

subgraph generation steps were explained in section 3.6.2.

The proposed algorithm is a generic algorithm that can be applied to most GNN architectures.

Parallelizable methods which are applicable to this type of architecture can still be applied because

the modification is limited to the adjacency matrix used in the algorithm [202].

Now that we have seen in detail how RankedDrop method works, we will see and compare its

performance in the next section.

3.7 Case studies and experimental results

Three standard citation datasets were used in our experiments: Cora, Citeseer and Pubmed. These

datasets represent collections of scientific articles that are classified according to the main research

topic. Detail information of these datasets are described in the table 3.1.

Cora Citeseer Pubmed

Nb of nodes 2 707 3 327 19 717
Nb of edges 5 429 4 732 44 338
edges/node (mean) 2.01 1.42 2.25
Max node degree 168 99 171
Max val PR 0.0492 0.0401 0.00610

Table 3.1: Datasets global information.

To compare our results, we use the accuracies of the version without sampling and with sampling

performed by DropEdge. The dropping phase that is performed with DropEdge is completely random.

Comparing the results between these methods shows the influence of the randomness control on the

accuracies of the GNN models.

The extraction of graph data, the score computation until edge selection and dropping were done

before the GCN training on Intel Xeon Processor E5-2690 with 8 cores. We used the C++ language to
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perform the above mentioned operations. Several high performance computing techniques were used,

in particular the computations on the adjacency matrices were done in parallel. To gain computational

efficiency and memory, all the adjacency matrices were compressed and stored in the COO format,

a sparse storage format. The training of GNNs were done on Nvidia Tesla V100 PCIe 16GB GPUs

with a TensorFlow implementation. Since our solution can generate subgraphs independently of the

training, we first generated the subgraphs before using them with different hyperparameters and GNN

models. We used the Protobuf library to transfer the data between the two programming languages.

3.7.1 Score computation in presented experiments

As indicated in the section 3.6, we will here discuss the extraction of data from the graph structure to

build the score vector. The final score vector should reflect the importance of a node in the graph and

the probability to be selected in function of the ranking. As a reminder, the RankedDrop method relies

on the fact that the more important the score associated with the node is, the more it will be selected

when building the subgraphs. For our experiments, we used two main data on the graph structure:

PageRank and degrees. This choice allows us to have both an extraction of the importance of the node

in the local structure and in the global structure of the graph.

Global structure Different graph node ranking algorithms could be used here to judge importance

of each node on the global graph. In RankedDrop, we decide to use the PageRank algorithm to

generate the score of importance, because (1) PageRank is a well-known and studied algorithm of

the last decades, by our knowledge it can be easily implemented in a distributed way to accelerate

its computation [275]; (2) It was already used in GNNs to reduce the oversmoothing [24]. From the

adjacency matrix A, a vector of size n will be returned and will contain the score of each of the

n nodes. The main operation of each iteration of the PageRank algorithm is a sequence of matrix-

vector multiplication where the output vector is used to perform the next iteration multiplication.

By considering A as sparse, the cost of this sequence of sparse matrix-vector multiplications is

reduced and can be executed efficiently in a distributed way [134], which allows to optimize the extra

computations that PageRank requires. This iterative method stops when the convergence has reached
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the expected precision. The result vector of the last iteration contains then the scores of each node of

the graph and all elements are between 0 and 1. The higher the score, the more important the node

is in the global graph. A β coefficient is also introduced during the PageRank. It is an optimization

allowing to redistribute a part of the scores of each node among all the other nodes. In this way, the

convergence of the result vector is faster and avoids that all the score is distributed only within the

strongly connected component. Conventionally, the β coefficient is fixed around 0.85, this value was

used for the following experiments.

Local structure The node-level information reflect the local impact that a node will have on its

neighborhood. We will use the degrees of each node as information to determine a score for the

local structure. Indeed, it is by its neighborhood that the node will propagate information during the

execution of the GNN. If a node has many neighbors, it will have an impact at each layer on them and

thus the information it contains will be strongly taken into account at the local level. The degrees are

extracted from the adjacency matrix A of the graph.
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Figure 3.5: Loss payout curve for datasets with the GCN 4 layers architecture in full-supervised
learning. Comparison between the original method, DropEdge (DE) and RankedDrop (RD).

3.7.2 Scalability and impact on overfitting

In the following subsections, the RankedDrop (RD) method was compared to both an original GNN

method without dropping and with the DropEdge [231] (DE) method discussed in the section 3.2.2.

GCN used is the original version.
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Figure 3.6: Loss payout curve for datasets with the GCN 4 layers architecture in semi-supervised
learning.

Dataset Layers Original DE RD

Cora
2 81.10 82.80 82.90
4 78.50 78.80 82.00
8 31.10 53.10 63.90

Citeseer
2 70.80 72.30 73.20
4 61.20 68.80 71.30
8 30.20 33.20 45.50

Pubmed
2 79.00 79.60 79.90
4 78.30 77.70 79.40
8 61.20 54.50 77.10

Table 3.2: Accuracy comparison for semi-supervised learning methods for GCN architecture.

We analyze in this section the performance of the method with the GCN architecture as initially

introduced in [151]. The accuracy obtained from the original GCN, GCN with DropEdge and GCN

with RankedDrop are summarized in the table 3.2 with varied network depths. The hyper-parameters

to train the 2-layer GCN were directly from the paper of DropEdge, and the ones for 4 and 8 layers are

the best configurations we found. The table 3.2 shows us that both dropping methods perform better

performance than the no-dropping original method. This observation validates our claim that higher

quality graph structure information improves the performance of GNN. More importantly, we can

observe that RankedDrop helps GNN always obtain better accuracy than DropEdge. It confirmed our

claim that higher-quality graph structure information requires better analysis of the graph’s topology.
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Moreover, the deeper the GCN is, the better accuracy improvement RankedDrop offers compared to

DropEdge. The accuracy obtained with RankedDrop for the 8-layer GCN could be up to 20% better

than the one with DropEdge. Even for the 2-layer GCN, the accuracies of RankedDrop are equivalent

or superior to those well-tuned by DropEdge.

The figures 3.5 and 3.6 show the training and validation loss curves in full-supervised and semi-

supervised learning, respectively. All curves for the same dataset were obtained with the same hyper-

parameters. Only the percentage of dropping edges is different between DropEdge and RankedDrop.

We can observe that the two dropping methods generally have similar behavior and better loss

convergence than the original GCN. However, in some cases, the validation loss of RankedDrop

converges again better than the one of DropEdge. These experiments show that RankedDrop is an

interesting method to reduce the overfitting phenomenon and stabilize the loss. RankedDrop also has

the same behavior on oversmoothing reduction as DropEdge then we did not study this part.

3.7.3 Portability and efficiency on different GNN models

We evaluate here, for each dataset, with three different GCN backbones: Vanilla network (GCN) [151]

, Inception network (IncepGCN) [266] and dense network (JK) [289].

Dataset Type Original DE RD

Cora
4 GCN 88.70 90.50 90.70

4 IncepGCN 89.90 91.10 91.80
16 JK 90.40 91.40 88.30

Citeseer
4 GCN 76.70 79.20 79.90

8 IncepGCN 79.20 80.50 80.30
8 JK 79.60 80.20 79.80

Pubmed
4 GCN 88.70 90.50 90.70

4 IncepGCN 89.90 91.10 91.80
16 JK 90.40 91.40 88.30

Table 3.3: Accuracy comparison for full-supervised learning with GCN, IncepGCN and JK architec-
tures based on the most efficient dropping architectures with the DropEdge method.

The accuracy results in full-supervised learning obtained without a dropping method (Original),

with DropEdge (DE) and with RankedDrop (RD) are summarized in the table 3.3. We applied
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to RankedDrop the same hyper-parameters of the best accuracy one from DropEdge to study the

portability and efficiency of RankedDrop, but not the best-trained ones to explore the accuracy limit.

The only parameter changed from DropEdge for RankedDrop is the percentage of dropping edges,

which is not a hyper-parameter for learning but a parameter used during the sampling to determine

the size of the subgraphs to build. The results of accuracy are very similar between RankedDrop and

DropEdge. In particular, RankedDrop achieved better accuracy results than DropEdge on Cora the

smallest dataset, where we control the overfitting better. Meanwhile, we can see that the deeper the

network is (for example, with 16-layer JK), the more significant different results are obtained between

DropEdge and RankedDrop. According to our analysis, deeper networks are more sensitive to hyper-

parameters. If we apply RankedDrop tuned hyper-parameters, we could obtain better accuracy results

too. Nevertheless, RankedDrop can still benefit from the hyper-parameters tuned from other methods

with acceptable performance.

The additional computation power required for RankedDrop can be summarized as the extraction

of the data and the creation of the subgraphs. The complexity of PageRank is O(2nnz − n) and the

complexity of subgraph creation isO(nnz) where nnz is the number of graph edge and n the number

of graph nodes. The PageRank, like any other data extraction is only done once per graph and the

generation of the subgraph is done at each epoch. This generation complexity is negligible compared

to the complexity required to train the graph neural network model.

3.7.4 Experiments reproducibility

The parameters used to generate the accuracy that are presented in the table 3.2 and 3.3 are explained

in the table 3.4. There are both the hyper-parameters of the models that are used for the execution

of the backbones. As our implementation is based on the DropEdge [231] solution, its model hyper-

parameters such as learning rate, random seed or number of epochs are also hyper-parameters for our

RankedDrop method. All hyper-parameters that have not been modified from the DropEdge version

have not been added to the table 3.4. We have also added a number of additional hyperparameters to

control the selection of the edges to drop. We have implemented three ways to take into account the

information from the structure of the graph. This is the parameter which is named score. Either we
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have used only the degree information or the PageRank information, which is respectively indicated

by Deg and PR, or we have used both at the same time to build the score vector and it is noted PRxD.

In addition to this parameter, we have influenced the choice of edges to remove from the graph with

the following parameters:

• dd: It is a boolean that removes the edge in the opposite direction of the selected edge when the

dataset is symmetric. Vertices are removed in pairs and this allows to keep a undirected graph.

• reverse: It is a boolean that allows to reverse the adjacency matrix. By doing this, each edge

is no longer associated with the tail node but with the head node, and if the scores of the two

nodes associated with that edge are not the same, it changes the probability of selecting that

particular edge.

• lowest: It is a boolean that reverses the ranking of the nodes of the graph using the reciprocal

of the score associated to each node.
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Ref Backbone Dataset nlayers Hyper-parameters
Table 3.2 GCN Cora 2 lr:0.001, weight-decay:1e-4, sampling-percent:0.7, score:PRxD, dd:false, reverse:true, lowest:true,

niter:400
Table 3.2 GCN Citeseer 2 lr:0.007, weight-decay:1e-4, sampling-percent:0.6, score:PR, dd:false, reverse:false, lowest:true,

niter:400
Table 3.2 GCN Pubmed 2 lr:0.009, weight-decay:1e-2, sampling-percent:0.8, score:PR, dd:true, reverse:false, lowest:true,

niter:400
Table 3.2 GCN Cora 4 lr:0.004, weight-decay:1e-4, sampling-percent:0.3, score:PRxD, dd:false, reverse:true, lowest:true,

niter:400
Table 3.2 GCN Citeseer 4 lr:0.008, weight-decay:1e-3, sampling-percent:0.1, score:Deg, dd:false, reverse:true, lowest:false,

niter:400
Table 3.2 GCN Pubmed 4 lr:0.008, weight-decay:1e-2, sampling-percent:0.9, score:Deg, dd:false, reverse:true, lowest:false,

niter:400
Table 3.2 GCN Cora 8 lr:0.003, weight-decay:1e-5, sampling-percent:0.7, score:PR, dd:true, reverse:true, lowest:false,

niter:1000
Table 3.2 GCN Citeseer 8 lr:0.001, weight-decay:1e-5, sampling-percent:0.5, score:PRxD, dd:false, reverse:true, low-

est:false, niter:1000
Table 3.2 GCN Pubmed 8 lr:0.006, weight-decay:1e-4, sampling-percent:0.5, score:PRxD, dd:true, reverse:true, lowest:true,

niter:1000
Table 3.3 GCN Cora 4 lr:0.01, weight-decay:0.005, sampling-percent:0.6, score:Deg, dd:true, reverse:true, lowest:true,

niter:400
Table 3.3 GCN Citeseer 4 lr:0.009, weight-decay:1e-3, sampling-percent:0.1, score:Deg, dd:true, reverse:true, lowest:false,

niter:400
Table 3.3 GCN Pubmed 4 lr:0.01, weight-decay:1e-3, sampling-percent:0.2, score:PRxD, dd:true, reverse:true, lowest:false,

niter:400
Table 3.3 IncepGCN Cora 8 lr:0.01, weight-decay:1e-3, sampling-percent:0.1, score:PR, dd:true, reverse:false, lowest:true,

niter:400
Table 3.3 IncepGCN Citeseer 8 lr:0.002, weight-decay:0.005, sampling-percent:0.1, score:Deg, dd:true, reverse:true, lowest:false,

niter:400
Table 3.3 IncepGCN Pubmed 4 lr:0.002, weight-decay:1e-5, sampling-percent:0.3, score:PRxD, dd:false, reverse:true, lowest:true,

niter:400
Table 3.3 JK Cora 16 lr:0.008, weight-decay:5e-4, sampling-percent:0.1, score:PR, dd:true, reverse:true, lowest:true,

niter:400
Table 3.3 JK Citeseer 8 lr:0.004, weight-decay:5e-5, sampling-percent:0.8, score:PR, dd:true, reverse:true, lowest:true,

niter:400
Table 3.3 JK Pubmed 64 lr:0.005, weight-decay:1e-4, sampling-percent:0.9, score:Deg, dd:false, reverse:false, lowest:false,

niter:400

Table 3.4: Hyper-parameters used to obtain the accuracy presented in the chapter 3 with the RankedDrop method.
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3.8 Conclusion

The RankedDrop method presented in this section is a flexible and easy-to-use solution for graph

sampling with topology-aware controls for selecting dropping edges. RankedDrop could be effectively

introduced into Mindspore [39] as a data augmentation solution for the various GNN models currently

proposed in this open-source framework. RankedDrop appears as a mixed-use solution for sampling

and retaining the essential information about the structure in generated subgraphs. RankedDrop

maintains the advantages of the SOTA dropping methods, including low complexity in computation

and a sensible reduction of oversmoothing and overfitting, as well as the possibility to combine

with improvements on the GNN architecture design. The results generated by RankedDrop are very

encouraging and promising.

In the future, RankedDrop may be extended to help the development of deeper GNNs. Moreover,

thanks to the low computation complexity, we could develop a parallel and distributed computing

version of RankedDrop with fewer obstacles. An important opening of this study is the possibility of

using RankedDrop to improve the training of neural networks on denser graphs.
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Chapter 4

Optimizing Sparse Matrix Operations for

Deep Learning in Distributed Systems

4.1 Introduction

The increasing complexity of deep learning models has necessitated more efficient computational

techniques, particularly in the context of large-scale distributed environments. One of the most

prominent challenges in this domain is the efficient handling of sparse data structures, which, as we

discussed in the previous chapter, frequently arise in applications such as graph neural networks and

recommendation systems. Sparse matrices, which contain a significant proportion of zero values,

introduce unique computational challenges, including memory inefficiency and suboptimal workload

distribution. Addressing these challenges is crucial to ensuring the scalability and performance of

deep learning models in high-performance computing environments.

In this chapter, we investigate the role of data sparsity in deep learning, exploring both its algo-

rithmic advantages and its computational implications. Our focus is on key sparse matrix operations

that are commonly encountered in deep learning applications, particularly in distributed settings. We

propose optimized methods for storing, processing, and distributing sparse data, aiming to enhance

computational efficiency while maintaining model accuracy. Additionally, we introduce novel tech-

niques for data distribution and workload balancing. These contributions provide a foundation for
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improving the scalability of deep learning models, making them more viable for large-scale applica-

tions.

After introducing sparse matrices and the challenges associated with these matrix operations

in sections 4.2 and 4.3, we will present our data distribution strategy for successive sparse matrix

operations in section 4.4. Then, we will introduce our approach for efficiently constructing the co-

occurrence matrix in the section 4.5. Following an a priori analysis in 4.6, we will conclude with

experimental results in section 4.7.

4.2 Fundamentals of sparse matrix computation

4.2.1 Definition of sparse matrix

A sparse matrix is a matrix composed mainly of zeros and containing relatively few non-zero elements.

There is no precise threshold below which a matrix is considered sparse. A good definition would

be that a matrix is sparse when it is advantageous to consider it as such in computations. When you

want to manipulate or store sparse matrices with a computer, it is advantageous and often necessary

to use algorithms and data structures that take into account the sparse structure of the matrix. These

data structures will only store the non-zero elements of the matrix, as well as the position of these

non-zero elements. Based on this information, it is possible to rebuild the matrix overall, considering

all elements for which we have no information as null elements.

By convention, the number of non-zero elements of a sparse matrix is denoted nnz. The density

of a sparse matrix is a measure of the proportion of non-zero elements to the total number of elements

in the matrix. If we consider the matrix A of size (m× n) with nnz non-zero elements, the density d

is calculated as the ratio

d =
nnz

m× n
(4.1)

The proportion of zero elements to the total number of elements in the matrix is called sparsity.
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The sparsity s and density d are directly correlated because s is defined as

s = 1− d (4.2)

By definition, the density of a sparse matrix is low and its sparsity is high. The lower the density

of a matrix, the more advantageous it is to process and manipulate it in a sparse format. There are a

number of sparse matrix storage formats, as we will see in the next section.

In figure 4.1, I’ve calculated the theoretical execution times for a matrix-vector product with a

100, 000 square matrix, as well as an analysis of the memory required to store this same matrix. We

can see that the performance gains and memory savings are very significant when the matrix density

is low. I’ve only taken into account the fact that pipelining is not possible with sparse formats because

of the unstructured data, unlike dense formats which store the matrix elements in a 2D array to build

the figure 4.1a. In practice, other factors have a significant impact on the execution time of sparse

matrix operations: the storage format, memory efficiency for accessing indices or the distribution of

non-zero elements in the matrix. In application, the use of matrix compression formats is interesting

at even lower density levels. In terms of memory, however, the gains are interesting from a density of

30% to 50% depending on the storage format, as can be seen in figure 4.1b.
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Figure 4.1: Theoretical memory space needed to store the matrix and execution time to realize a
matrix-vector multiplication in function of data density and compression method. Execution time is
calculated on the assumption that pipelining is not possible with the sparse format due to unstructured
data.
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4.2.2 Sparse storage formats

There are many different types of sparse storage format. The choice of format depends on several

factors. First of all, it depends on the special properties of the matrix. Take, for example, a tridiagonal

matrix. The non-zero elements follow a structure and it is therefore advantageous to store the matrix

using storage formats specially designed for this type of matrix, such as diagonal storage [3]. Another

factor is the distribution of non-zero elements in the matrix. Some formats can only be used when the

number of non-zero elements is evenly distributed per row or column. A final factor is the evolution of

the matrix content. Some storage formats will not be appropriate if the number of non-zero elements

changes during processing. Indeed, some formats will require extra computation to add non-zero

elements to the matrix. Research has been performed to automatically determine the optimal storage

format based on the matrix structure and the computing environment [193, 194]. In the remainder of

this section, we present the most popular sparse storage formats.

To get a better idea of how the information for the different storage formats is stored, the following

square matrix with nnz = 8 will be used as an example:
0 0 0 0 15
21 22 0 0 0
0 0 33 0 35
41 42 0 0 0
0 0 0 54 0

 (4.3)

Coordinate format (COO)

This storage format is certainly the simplest of all : it consists to store data in three different vectors.

The size of vectors is the number of nonzero values nnz in the matrix. These three vectors will store

one of these data for each nonzero value : the row index, the column index and the value. With these

three vector, it is very simple to have information about a value : simply read the ith value of each

vector to find the information for that point. This format has the advantage of being easy to understand

and it is very quick to add new nonzero values because just need to increase the size of the vectors

and add these new values at the end. A representation of the matrix 4.3 in the COO format is:
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row =
(
1 2 2 3 3 4 4 5

)
col =

(
5 1 2 3 5 1 2 4

)
val =

(
15 21 22 33 35 41 42 54

)
Compressed sparse row (CSR)

This storage format, also known as the Yale format, stores the sparse matrix in three vectors like the

COO format. A first vector, with a size of nnz will be used to store the nonzero values in the order of

appearance in the matrix, line by line. A second vector with the same size will store for each value

of the first vector the index of the column in the matrix. Finally, the third and last vector, with a size

of (number of rows + 1) will be used to store the index of the first value of each row. This format

allows to take less memory space than the COO format, but it is more complicated to modify the

matrix because it requires many modifications in the vectors, where the COO format does not require

a specific order of data storage in the vectors. The storage of the matrix 4.3 in the CSR format is:

ptr =
(
0 1 3 5 7 8

)
ind =

(
5 1 2 3 5 1 2 4

)
val =

(
15 21 22 33 35 41 42 54

)
Compressed sparse column (CSC)

In the same way as the CSR format, the CSC format stores matrix elements column by column. This

time, we store the row indices of non-zero elements. This gives the matrix 4.3 the following vectors:

ptr =
(
0 2 4 5 6 8

)
ind =

(
2 4 2 4 3 5 1 3

)
val =

(
21 41 22 42 33 54 15 35

)
ELLPACK (ELL)

This format implicitly imposes to have approximately the same number of nonzero values on each

row of the sparse matrix. The values are stored in two matrices of size (number of rows × maximum
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number of nonzero values in a row). For this, we will add in the first matrix all the nonzero elements

on the corresponding line. This is similar to compressing the matrix by removing the nonzero values

from each row. The index of the column associated with each of these values is stored in the other

matrix. For a nonzero value, its row is obtained by looking at its position in the matrix and its column

with the second matrix. This format makes it easy to modify the matrix, on condition that you do not

want to add a new value to a row that already contains the maximum number of non-zero values. In

this case, it will be necessary to add a column to each of the two matrices. It is a format that tends to

be more demanding in terms of memory than the first two other formats, but it has the particularity of

being quite intuitive. The ELLPACK representation of the matrix 4.3 is

colInd =


5 _
1 2
3 4
2 1
3 _

 val =


15 _
21 22
33 35
42 41
54 _


4.2.3 Sparse matrix applications

Sparse matrices are at the heart of a wide range of applications in many different fields, including

scientific computing [206], mathematical modeling [150], bioinformatics [243], engineering and

economics [50].

One common approach is to store the structure of a graph by storing the adjacency matrix. The

adjacency matrix size is (n × n) if the graph is composed of n nodes. Each element Ai,j of the

adjacency matrix indicate of there is an edges from the node i to the node j. The adjacency matrix of

the example graph in figure 3.1 is the following matrix:

0 1 1 1 1 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 1 1 0 1 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0


(4.4)

This matrix is a fundamental tools in graph theory. The spectral graph theory study the relationship

between the eigenvalues and the eigenvectors of the adjacency matrix and the graph. The adjacency
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matrix of a graph is sparse, specially when the graph dimension is high. Storing this matrix in memory

in a sparse storage format will reduces the memory space needed.

Sparse linear algebra methods for multiplication with a sparse matrix are essential to take full advan-

tage of the matrix’s sparsity. Figure 4.2 shows the performance differences with the FIDAPM37 [65, 66]

matrix, a square matrix of size 9152 from the FIDAP set, composed of 765, 944 non-zero elements,

representing a density of 0.914%. We can see from sub-figure 4.2b that using the sparse format to

compress the matrix saves on the memory needed to store it. The COO format requires 36 times less

memory to store the matrix. We can also observe a reduction in execution time for matrix-vector

multiplication on figure 4.2a. Execution time is divided by more than 50 thanks to data compression.

We can see that with a density close to 1%, the gains made by using sparse matrices are very significant.

This is explained by the fact that operations involving sparse matrices have complexities that depend

on the number of non-zero elements nnz [90], unlike matrix operations whose complexity depends

on the size of the matrix n2.
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Figure 4.2: Comparison of the memory required to store the matrix FIDAPM37 [65, 66] and the
execution time to perform matrix-vector multiplication as a function of how the matrix is stored.

4.2.4 Overview of sparse matrices in deep learning

Sparse matrices are present at different levels and in different areas of deep learning, specially when

dealing with large-scale data and models. First of all, at data level. Many applications use sparse

data as input. For example, the adjacency matrix of a graph or the user-item interaction matrices are
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typically sparse because users interact with only a small subset of items. In some neural networks,

sparse matrices are used to represent convolutional filters [37], especially when dealing with large

and high-dimensional data. Finally, sparse matrices can also be the result of network regularization

techniques such as dropout [255].

4.2.5 Data distribution and model distribution

Data distribution and model distribution are two types of pattern that define how parallel calculations

are to be performed on a cluster of machines interconnected by a network. Data distribution, on one

hand, refers to the partitioning of data and its distribution among the different computation nodes.

Each node performs the computations linked to the data it has been given, and communicates with the

other nodes to merge the partial results and obtain the complete information. Model distribution, on

the other hand, refers to the distribution of the various model elements between nodes. In this way,

data is moved from node to node until it has passed through the entire model. A simple example would

be to associate each layer of a neural network to a computation node. The data will be presented to

the first node, which will then communicate the results to the second node, and so on. This serial

approach can be represented as a pipeline. It is a division of computational tasks between machines.

On the one hand, data distribution ensures that the system will be able to scale horizontally and

handle very large datasets. However, this distribution requires considerable focus on the way data

is distributed between nodes, to ensure optimal data access and avoid massive data redistribution

between nodes, which would have a significant negative impact on system performance. This requires

complex algorithms that can take into account the current distribution of data to ensure continuity

of computations throughout the process. Model distribution, on the other hand, involves taking into

account the way in which the various components interact with each other, ensuring that each node

has all the data it needs to perform its calculations. We also need to take into account the distribution

of workloads between nodes and communications between nodes, to avoid having a bottleneck caused

by a specific component that limits the entire performance of the system.

Both distributions are crucial and must be taken into account and implemented simultaneously in

massively distributed environments, to enable the manipulation of very large data sets and models. In
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this case, the result is multi-level distributed computing. This is an advanced technique for meeting

the needs of both data and model sizes. First, our model is divided into several separate components,

which are then distributed to sub-clusters of machines. Then, within each sub-cluster, we will set up

data parallelism between the computation nodes to accelerate the processing of this component. Multi-

level parallelism with data and model distribution requires careful planning and a deep understanding

of distributed computing tools and environments. It also requires a good comprehension of task and

operation training in the model, since the choice of optimal operations to implement depends on the

distribution of data between nodes, and consequently depends on previous operations.

4.3 Challenges in sparse matrix operations

Sparse matrix operations in deep learning present several challenges that can impact performance

and efficiency. Beyond the basic challenges associated with the use of sparse matrix formats (load

balancing, fill-in effect, not well-structured data, etc.), there are a number of additional context-specific

challenges that make it quite complex to process sparse matrix operations.

4.3.1 Hardware utilization

Most deep learning models are deployed on accelerators. However, accelerators such as GPUs and

Tensor Cores are initially designed for dense matrix operations. Efficiently utilizing specialized

hardware for sparse matrix operation is challenging due to the structuring of data, which often leads

to non-contiguous memory accesses [113]. Moreover, the SIMD architecture of GPUs is not easy

to fully exploit with sparse matrix operations and makes the execution of these operations relatively

slow [191].

4.3.2 Algorithmic complexity

Developing efficient algorithms that take maximum advantage of data sparsity is very important to

popularize their use. Designing algorithms that manipulate sparse matrices can be difficult in a

parallel computing environment. Indeed, the distribution of data and non-zero elements between
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nodes to enable efficient load-balancing can greatly complicate data management and greatly increase

the number of communications, thus reducing algorithm performance.

In a similar spirit of BLAS detailed in section 2.2.4, a collection of computational routines for

sparse matrix operations has been proposed in Sparse BLAS [60]. It supports all elementary sparse

linear algebra operations around sparse matrices. This standardized format supports multiple sparse

matrix storage formats and is designed to be easily adapted to use with other sparse matrix storage

formats. All three levels of BLAS are included, with sparse vector and matrix manipulation within

the operation.

4.3.3 Succession of matrix-matrix multiplication

Succession of matrix-matrix multiplication is a very common operation in deep learning models. This

is because the matrix resulting from the output of each layer is immediately used as input for the next

layer. Moving forward in the model is a succession of matrix-matrix multiplications interspersed with

the application of functions on the matrix elements, such as activation functions. It is therefore very

important to think about data distribution and load balancing so as to be able to carry out all these

multiplications with the least possible redistribution of data. Communications between each matrix

multiplication can have a significant impact on the execution time of the operation.

4.4 Matrix-matrix multiplication succession in distributed envi-

ronment

Our objective is to propose solutions for the correct treatment of large neural network for graphs.

GNNs need algorithmic solutions to efficiently assign and process graph data on modern distributed

and parallel machines, which are considered with mixed arithmetic and various types of tensor/matrix

accelerators.

As we saw earlier in this document in sections 2 and 3, graph is an unstructured data and it is not

possible to restructure it without an important lost of information. This is why GNNs are efficient to

deal with this type of data. They take into account the structure of graph during the learning process
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as well as the features themselves. To integrate the structure in the computations, the GNN models

often use the adjacency matrix to integrate the topological information in the model, and are managed

in a way that the information is propagated in the graph. GNNs for industrial applications use very

large graphs. Storing and manipulating adjacency matrices in the form of a sparse matrix is desirable

to have good performance and to limit memory footprint. Handling and exploiting these very large

GNNs and their data require heavy computing power, where parallel and distributed machines are

involved.

In this context, we propose an automatic solution for the distribution of matrix data, specially

designed to minimize communication and to limit the memory footprint. To present this solution, we

will first describe the problem and the context in section 4.4.1, then we will detail the functioning of

the solution in section 4.4.2 and how the redistribution of data is done in section 4.4.3, and compare

our solution with other distribution models in section 4.4.4.

4.4.1 Description of the problem

Programmers can perform multiplication between two matrices in a distributed environment in many

different ways. It is mainly the distribution of the data between the nodes that determines the way

the computations and the communications are performed. Focusing on a succession of matrix-matrix

multiplication forces us to consider how the data is distributed at the end of each multiplication and

what communications are needed to restart a matrix multiplication using the previous result matrix.

The optimal approach is to have as much data as possible already on the right nodes to restart an

operation. This limits the number of communications needed to redistribute the data.

A succession of matrix multiplications is relevant for the execution of a Graph Convolutional

Network[152]. The equation 3.1 that we will be rewrite just below is a generalization of how GNNs

work, and the computations required to move from one layer to the next. This equation is:

H l+1 = ϕ(ÃH lW l)

where H l is the embedding matrix representing the l-th graph layer output, W l is the weight matrix
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Figure 4.3: Overview of the data distribution with a grid of 9 by 9 nodes.

for the l-th layer and Ã is the modified graph adjacency matrix. We have two matrix-matrix multipli-

cations, one between a sparse matrix and a dense matrix at each layer. If the model is deep, the result

is a long succession of matrix-matrix multiplications (the activation function is only an operation that

must be performed on each element of the result matrix, which can be done independently).

4.4.2 Data distribution

We propose a matrix data distribution model that minimizes communications and requires a relatively

small space on each node. To illustrate this, we will consider the following situation: We wish to

compute C where C = AB where A and B are square matrices of size n and we have p computation

nodes with distributed memory. The first step is to organize the different computational nodes into

a 2D grid. The grid that is generated is √p ∗ √p and we denote px,y with 0 ≤ x, y <
√
p the node

located on the x row and the y column of the 2D grid.

The distribution of the matrix data will depend on the place of the matrix in the multiplication. For

the left term, here A, the matrix will be cut in√p block of rows, and each block will be distributed to

all the nodes which are on the row associated with this block in the grid. Thus the i-th row block of the

matrix A will be distributed on the nodes pi,:. The distribution of the right term of the multiplication

follows the same logic but with column blocks. The matrix B is split in √p sub-matrix of columns

of size ( n√
p
, n) and each block j is distributed on the nodes p:,j . Thus each node pi,j ends up with

two blocks: the block i of A and the block j of the matrix B. Each node can compute a part of the

result matrix from this distribution. The result block will be in our example of size ( n√
p
, n√

p
). The
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multiplication has been done and the data are now dispatched on the p nodes of the grid. The matrices’

splitting is illustrated in the figure 4.3.

Left matrix Right matrix Memory space
store matrices

Memory space
store result

Communication
to get results

Communication
left

Communication
right

Row Full n2

p
+ n2 n2

p
0 0 (p− 1)n2

Col Row n2

p
+ n2

p
n2 p(p− 1)n2 0 0

Block Row n2

p
+ n2

√
p

n2
√
p

p(
√
p− 1) n2

√
p

0 0

Grid-Row Grid-Col n2
√
p
+ n2

√
p

n2

p
0 p(

√
p− 1)n

2

p
p(
√
p− 1)n

2

p

Table 4.1: Comparison memory and communication with different distribution formats.

4.4.3 Redistribution for the next multiplication

Figure 4.4: Communications between two matrix multiplications in a sequence. The blue and orange
arrows indicate respectively the communications if the resulting matrix is used as the left or right term
in the next multiplication.

Now that the computation of C has been performed, matrix data are distributed in p blocks on the

p nodes of the grid. As illustrated in the figure 4.4, the communications necessary to redistribute the

matrix C will depend on its place in the next multiplication. If C will be the left term, each node will

send to all the other nodes on the same row of the grid its block of C. By receiving the√p− 1 other
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blocks, each node will be able to build the block row of the C matrix and perform the next matrix

multiplication. In an equivalent way if the matrix C is the term of the right-hand side of the next

multiplication, each node will diffuse its block with all the other nodes which are on the same column.

This communication only requires many-to-many communications. This communication model is

very well suited for 2D grid of cores architecture.

The use of a general pattern to dictate the data distribution in the matrices avoids managing data

location. Each node stores the blocks of matrices assigned to it. Moreover, the fact that the matrix is

split according to a grid means that sparse formats can be used locally on each matrix block without

any repercussions on the communications, which remain of fixed size.

4.4.4 Comparison with other data distribution

In this section, we compare our approach of data distribution as a grid in the table 4.1. We made

the comparison with three other distributions. For each method, we have listed the memory space

needed to store the matrices for the multiplication and the result matrix, as well as the communication

needed to obtain the final values. We also compare the communication needed to distribute the result

matrix according to whether it is on the left or the right in the next multiplication. To compare the

communications between the methods, we multiplied the number of communications by the size of

the communications. A summary of the total memory space and the necessary communications can

be found in the table 4.2. Our block approach allows us to limit the memory space to distribute

the data while ensuring that the maximum communications are the lowest. Although the Block-Row

approach also requires only many-to-many communications, our approach requires √p times less

communications.
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Method Memory space Max comm. Type of comm.

Row-Full n2 + 2n2

p (p− 1)n2 All-to-All
Col-Row n2 + 2n2

p p(p− 1)n2 All-to-All
Block-Row n2

p + 2 n2
√
p p(

√
p− 1) n2

√
p Many-to-Many

Grid-Block n2

p + 2 n2
√
p p(

√
p− 1)n

2

p Many-to-Many

Table 4.2: Comparison memory and communication distribution formats.

4.5 Efficient and scalable approach to build co-occurrence matrix

for DNN’s embedding layer

4.5.1 How to build co-occurrence matrix?

Let’s recall in this section how a co-occurrence matrix is basically built, in order to prepare a

smooth understanding on our design of Sparse-Pairwise co-occurrence matrix construction presented

in section 4.5.3. We will first provide here the notations with the basic symmetrical dot product

approach (a.k.a. matrix product) in both sequential and distributed environments. We will then extend

it to sparse matrices with a discussion on storage format and space complexity.

Symmetrical dot product from incidence matrix

Let’s first define an incidence matrix before going into the entire symmetrical dot product approach.

An incidence matrix, noted V , is a representation used to show the connections between two sets

of data. In our example in figure 4.5, the incidence matrix is used to show the connections between

instances and features in our dataset. Each row of the matrix represents an instance, and each column

a feature. We can quickly see from this matrix which data are linked to each other.

Therefore, the co-occurrence matrix C is constructed from this incidence matrix V . Based on the

associations between instances and individuals, this can be used to determine how often each feature

is associated with another feature.

More generally, the construction of the co-occurrence matrix between the n features of a dataset

composed of k instances is a level-3 BLAS matrix multiplication. We can build with V T × V that
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co-occurrence matrix C, which represents the true together frequencies of elements. The result of

this operation is a symmetrical matrix. This operation corresponds to a multiplication between a n×k

and a k × n matrix, which corresponds to k × n2 multiplication and (k − 1) × n2 addition. The

complexity of this operation as a function of k and n is O(k × n2).

The proportion of non-zero elements in the matrix over the total number of elements in the matrix

is called the density of the matrix. The inverse of the density is called the sparsity of the matrix. When

the density of non-zero elements in a matrix is sufficiently low, storing only the positions and values

of non-zero elements can save both memory and computing power. Low-density matrices are called

sparse matrices [90].

Sparse matrices can be used to build the co-occurrence matrix. When the proportion of non-zero

values is very low in the k vectors of the dataset, it is possible to consider the incidence matrix

V as a sparse matrix to speed up calculations. Exploiting matrix sparsity considerably reduces the

computational costs associated with matrix multiplication. However, performing a multiplication

between two sparse matrices is a complex and costly operation. Multiplication operations between

several sparse matrices are generally avoided and not supported by most sparse matrix libraries. The

main reason is the complexity required. Multiplying several sparse matrices in fact involves calculating

a prediction of the structure of the non-zero elements of the result matrix, before calculating the non-

zero elements of this matrix [45]. Determining the fill-in of an operation between several sparse

matrices is beyond the scope of a low-level computational kernel because it requires complicated

graph analysis [61]. In general, multiplying two sparse matrices tends to produce a matrix with a

higher density. This undermines the benefits of using sparse matrices. The complexity of supporting

sparse-sparse operations lies in the number of methods required to cover all possible multiplications

between different storage formats of sparse matrices. As the number of storage formats increases, the

number of subroutines to be developed also increases. This requires a high workload and makes the

process of adding new storage formats a complicated one.

One way of avoiding multiplication between several sparse matrices is to change the order in which

matrix operations are performed. For example, suppose we need to compute the following matrix

multiplication A · B · C with A and B sparse matrices and C a dense matrix whose dimensions
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are consistent for realizing the multiplications. It is simpler to first compute the result of the sparse

matrix-dense matrix multiplication B · C to obtain a new intermediate dense matrix T . We obtain

the final result by once again performing a sparse matrix-dense matrix multiplication A · T .

Therefore, we will not discuss the SpGEMM approach in this paper and will consider the sparse

approach as being the approach where one of the two matrices is considered to be stored in a sparse

storage format. Multiplying a sparse matrix with a dense matrix is a very popular and well-referenced

operation. The great advantage of this approach is that the computational complexity depends on the

density of the sparse matrix. So, the use of this approach is optimal when the density is close to 0.

In the rest of this paper, we will refer to the dense symmetrical dot product approach when both

multiplication matrices are stored in memory in dense storage format. The approach where one of the

two matrices is stored in memory and manipulated in a sparse storage format will be called Sparse

symmetrical dot product. We will compare both the dense and sparse symmetrical dot product (SDP)

approaches in section 4.7.

Distributed dot product

Multiplying two matrices in a distributed environment is well studied. A comparison of different data

distributions in terms of computational power, memory and communications costs can be found in the

paper [217].

By distributing the left matrix in √p row blocks and the right matrix in √p column blocks, we

maximize the load balancing while minimizing the memory space required on each node and limiting

communications. This distribution of data and calculations ensures optimal performance efficiency.

The computational complexity of such Dense symmetrical dot product approach is O(k × n2

p
) and

we need two blocks of size k×n√
p

on each processor. Each processor calculates partial values of the

result matrix block. A communication phase is required to obtain the final values of the result matrix

elements. Many-to-many communications are needed to process the reduction of these partial results.
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Sparse storage format

To facilitate a better understanding of approaches that deal with sparse matrices, we will be using

ELLPACK [237] as the sparse storage format in our examples. This format is easy to visualize and

comprehend while also effectively demonstrating the benefits of compressing matrix data. It should

be noted that depending on the characteristics and requirements of the dataset, other sparse matrix

storage formats can be employed in place of ELLPACK. The choice of format is completely free and

flexible.

Storing low-density matrices in a sparse storage format saves a lot of memory space. If the matrix

can be stored in memory on each node, then it is very interesting to consider duplicating the sparse

matrix on each node. In fact, one of the data distribution options allows you to obtain blocks of the

result matrix on each node without any additional communication. The result matrix will then be

distributed to the different nodes. Duplicating the sparse matrix on each node and splitting the other

dense matrix into p blocks avoids the communication phase involved in the reduction of partial results

with the √p block approach described previously. This data distribution is more memory-intensive

on each node but eliminates any need for communication to obtain the final results.

I like you. x1 = I
You like dogs. x2 = you
I don’t like dogs. x3 = don’t

x4 = like
x5 = dogs

(a) Example of corpus D

x1 x2 x3 x4 x51 1 0 1 0
0 1 0 1 1
1 0 1 1 1


(b) Incidence matrix V


2 1 1 2 1
1 2 0 2 1
1 0 1 1 1
2 2 1 3 2
1 1 1 2 2


(c) Co-occurrence matrix C

Figure 4.5: Example of corpus of words with (b) the incidence matrix and (c) the co-occurrence
matrix associated with the (a) distribution.

4.5.2 Pairwise approach

The pairwise approach is based on the following idea: the Ci,j element of the co-occurrence matrix

represents the number of times that features i and j have been simultaneously active for instance. In

other words, in a dataset composed of k elements, the co-occurrence matrix allows us to visualize

the number of times the features were simultaneously present on an instance. When i = j, the co-
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occurrence matrix tells us how many times the feature has been associated together on one instance.

Therefore, it is possible to construct the co-occurrence matrix by forming the set of feature pairs (i, j)

among all dataset instances. In concrete terms, it consists in finding all combinations of pairs of

non-zero values within each vector of the dataset.

Let’s take as an example the dataset proposed in figure 4.5a. The first instance (e.g., "I like you")

is composed of the features x1, x2 and x4. We should add 1 to the three elements on the diagonal of

the co-occurrence matrix Cx1,x1 ,Cx2,x2 ,Cx4,x4 , then add 1 for each possible pair with i ̸= j. We

have 6 possible pairs which are as follows: (x1, x2), (x1, x4), (x2, x4), (x2, x1), (x4, x1), (x4, x2). We,

therefore, add 1 to all the elements of the co-occurrence matrix with these indices. Do the same with

the other sentences in the dataset to obtain the co-occurrence matrix C. A visual example of the

Pairwise approach is shown in figure 4.6. In this example, a color is associated with each element of

each vector, and underneath are the possible pairs of elements. We have highlighted the pairs that can

be constructed with the non-zero elements of each vector. The result is a matrix for each vector, which

is then reduced to produce the final co-occurrence matrix.

Algorithm 6 Build the co-occurrence matrix from the Pairwise approach.
Input: D the dataset (list of the k input boolean vectors of size n)
Output: The co-occurrence matrix M of size n× n

1: initialize all elements of M to 0
2: for each non-zero element i of D do
3: for each non-zero element j in the same vector than i do
4: M i,j ←M i,j + 1
5: end for
6: end for
7: return M

Note here that it is possible to limit the search for pairs with i ≤ j. This makes it possible to

construct only the upper triangle of the co-occurrence matrix. If we name the resulting triangular

matrix TC , we obtain C = TC + T T
C − diag(TC).

Algorithm 6 represents the pairwise method. Although on theory this is a very interesting

approach, since it takes advantage of the fact that the data set is Boolean, it generally gives less

interesting performance. Finding all possible pairs of elements in a vector means finding the non-zero

elements in the vector, then for each of these values, finding the other non-zero elements in the same

105



[0 1 1 0]

[0 1 0 1]

[1 1 1 0]

0 1 1 0
0 1 0 1
1 1 1 0

1 1 1 0
1 3 2 1
1 2 2 0
0 1 0 1

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

Figure 4.6: Example of processing with the Pairwise method to construct the co-occurrence matrix.

vector. Still in the algorithm 6, the for loop in the lines 2 and 3 are actually two nested loops whose

execution depends on the result of a condition. For each element in the vector, test the element value.

If the result is yes, continue in the next loop; otherwise, test the next element. The problem is that if

statements tend to break the pipeline that runs within CPUs on modern architectures [212]. We will

look at this in more detail in section 4.7.

The sparsity of the dataset has an impact on the performance of this method: it will define the

number of times we enter the first loop for (line 2). The second loop, for, will run through all

elements, regardless of sparsity. In the next section, we will take a look at an approach derived from

the pairwise approach that takes greater advantage of data sparsity.

4.5.3 Sparse-Pairwise approach

We have seen in the previous sub-section that the pairwise approach takes advantage of the fact that

the dataset is composed only of boolean elements, and the symmetrical dot product approach takes

advantage of the fact that sparsity is high to speed up computations thanks to sparse linear algebra.
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Algorithm 7 Sequential algorithm of Sparse-Pairwise approach.
Input: D the dataset (list of the k input boolean vectors of size n)
Output: The co-occurrence matrix M of size n× n

1: initialize all elements of M to 0
2: A← build the ELLPACK sparse matrix index from D
3: for each of the k vectors in D do
4: for each non-zero element i in k do
5: for each element j in Ak,: do
6: M i,j ←M i,j + 1
7: end for
8: end for
9: end for

10: return M

Input
data

Compress input 
data by rows

Pair non-zero element of input data
with associated compressed vector

Build co-occurrence
matrix

Figure 4.7: Overview of the Sparse-Pairwise approach.

In this part, we propose an approach that combines this approach with the dot product approach to

speed up the construction of the co-occurrence matrix with both sparse linear algebra and boolean

arithmetic. Figure 4.7 illustrates the main points of this approach to build co-occurrence matrix.

The limitation of the pairwise approach is that each time a non-zero element is found, the set of

other non-zero elements in the feature vector must be found. Instead of traversing the entire vector

when a non-zero value is found in the dataset, the Sparse-Pairwise approach consists of an initial scan

the dataset to prepare the index list of non-zero values. By doing this, each time a non-zero value is

found, we can immediately refer to the index list to find the pairs in which this non-zero element will

be found. This quickly completes the list of pairs, without having to go through the rest of the vector.

Taking as an example the dataset in figure 4.5, compressing the incidence matrix in ELLPACK
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format gives the following index matrix:

EV =


1 2 4 −

2 4 5 −

1 3 4 5


Then, for each vector i of dataset instances, we will increment all the elements of the co-occurrence

matrix whose coordinates are the index pairs stored in row i of the above matrix.

For the first dataset instance, the indices in line 1 above are s1 = {x1, x2, x4}, so the set of pairs

is (x1, x1), (x1, x2), (x1, x4), (x2, x1), (x2, x2), (x2, x4), (x4, x1), (x4, x2), (x4, x4). We then add 1 to

all the elements of the co-occurrence matrix with these coordinates. This operation is repeated with

the other vectors in the matrix to obtain the co-occurrence matrix for the dataset.

With this approach, we take advantage both of the pairwise search made possible by the fact

that dataset elements are binary values, and of the sparse storage format made possible by the data’s

sparsity. The algorithm 7 represents the sequential version of this approach, and we will discuss its

deployment in a massively distributed environment in the following part.

4.5.4 Deploying in a massively distributed environment

Datasets are generally very large, and to be able to build the co-occurrence matrix on very large

datasets, it is essential to have an algorithm adapted to a distributed computing environment. In this

section, we will compare the two previous implementations and see what possible optimizations we

can take advantage of with distribution. Let’s note p the number of processors on which calculations

will be distributed. For communications purposes, we assume that these p nodes are linked by a

network and have distributed memory.

Given the general size and density of large DNN datasets, it has been assumed that every node pos-

sesses ample memory space to replicate the sparse matrix, as elaborated in section 4.5.1. Duplicating

the data to avoid communication seems to be the most advantageous approach for data distribution

while dealing with sparse matrices. In the case where the sparse matrix is too large to be stored as

such on each node, dividing the sparse matrix into several blocks of size√p is also a plausible method
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for data distribution.

Pairwise approach

The naive pairwise search approach distribution is to distribute for loops between the nodes. This

approach is not very efficient because building the final co-occurrence matrix will create a lot of

communication for the reduction. A more interesting approach is to construct the co-occurrence

matrix by blocks of rows. This approach allows us to play with the intervals covered by the for loops.

Let b be the number of blocks into which you want to divide the matrix C. The i block of the matrix

represents the rows [n
b
× i, n

b
× (i + 1)[. Since the matrix is symmetrical, adding data to the Ci,j

element will also add data to the Cj,i element. So we can limit the range of loops by checking that

either i ∈ [n
b
× i, n

b
× (i+1)[ or j ∈ [n

b
× i, n

b
× (i+1)[. In addition, since i ≤ j, we can also limit the

interval of the first loop for to [0, n
b
× (i+1)]. When the element visited by the first loop is non-zero,

it checks whether the element is in the interval. If yes, the second loop must traverse the rest of the

vector. If not, then the interval of the second loop will be limited to the interval [n
b
× i, n

b
× (i+ 1)[.

Implementing the concept of the Sparse-Pairwise approach in a distributed environment is a

challenging task. Indeed, distributing the different index lists of non-zero values of each instance will

effectively distribute the computational power need, but each node will build a partial result of the

entire co-occurrence matrix. Allreduce communications must be made with a length of n2 values.

This scenario is unthinkable with very large datasets, given the communications size and the associated

cost.

To be able to eliminate communications, each node must build a block of the final result of the

co-occurrence matrix independently of the other nodes. This would result in the co-occurrence matrix

being distributed across the different nodes, with blocks of similar size.

Sparse-Pairwise adapted from the sparse symmetrical dot product

The first approach is to use the same data and computation distribution of the sparse symmetrical dot

product approach. TheE matrix representing the list of indices is duplicated on each calculation node.

Each node then calculates a block of n
p

rows of the co-occurrence matrix, by scanning each vector in
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Approach Computation
complexity

Memory space to
store input

Dense symmetrical dot product O(k × n2

p ) 2× k×n√
p

Sparse symmetrical dot product O(d× k × n2

p ) d× n× k + k×n
p

Pairwise O(d× k × n2

p ) k × n

Sparse-Pairwise O(d2 × k × n2

p ) d× n× k + k×n
p

Sparse-Pairwise (Save memory) O(d2 × k × n2

p ) (1+ 1
p)×d×k×n

Table 4.3: Comparison of required computation power and memory for approach in a distributed
environment.

the dataset for non-zero elements. When a non-zero value is found, we update the matrix as explained

in section 4.5.3 with the indices of the E matrix. This approach requires no additional computation.

This is the approach we will be deploying when memory constraints are not the priority. We will refer

to this approach as the standard Sparse-Pairwise approach in the remainder of this paper.

Sparse-Pairwise approach to save memory

Storing dense blocks of vectors for scanning may require sparing memory to store the entire dataset

when the dataset is large. This is why we propose an approach that uses the Sparse-Pairwise principle

to limit the memory space required. The aim is to transform all input data into sparse formats. This

reduces the amount of memory required to store the input data and adds to the cost of transforming

the data.

The principle of this approach is similar to the first, except that instead of dispatching the vectors to

the different nodes, we first calculate the columns’ compressed matrix, then dispatch this compressed

matrix and use the indices in this matrix. It is impossible here to use the already calculated rows’

compressed matrix, as it gives no information on the position of the indices to be taken into account

when creating a block of the co-occurrence matrix. Consequently, searching for the values included in

the processing interval requires going through the entire compressed matrix, reducing the interest in

this approach in a distributed environment. Scattering the matrix ensures that each node immediately

has the set of non-zero values it needs to find in order to update its result block in the matrix.
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However, using only compressed matrices requires more computational power than the standard

Sparse-Pairwise approach. To build the columns’ compressed matrix, we need to go through the

blocks of vectors in the dataset and then build the matrix. The columns’ compressed matrix requires

more computational power to build than the standard Sparse-Pairwise approach for simply traversing

the dense blocks.

This approach is very interesting for processing very large datasets on machines with limited

RAM. The saving in terms of memory space will depend on the sparsity of the data. All the input

data used to build the co-occurrence matrix is compressed. This approach will only be used when

RAM memory cannot store all the information required to build the co-occurrence matrix with the

standard Sparse-Pairwise approach. In the next section, we will examine the theoretical comparison

of the different approaches with a cost analysis.

4.6 A priori analysis

This section will discuss the theoretical performance of the approaches we discussed in the previous

section. To obtain a theoretical approximation of costs, we have used the BSP approach [34].

We have used approaches that minimize communication. Since this is a very costly step, we

have favored approaches that allow us to obtain a block of my result matrix on each node without

communication. The only communication we have is the distribution of data among the calculations.

The cost of this communication phase depends on where and how the data is stored, and on the

implementation. We will not be considering the communication costs of initial data distribution and

splitting.

The table 4.3 compares the different approaches regarding computational complexity, memory and

communication. Complexities are given as a function of n and k, the dimensions of the dataset, the

number of processors p and the density of the dataset noted d. d is between 0 and 1 and represents the

ratio between the number of non-zero values and the total number of elements in the matrix.

When sparsity starts to become significant, the most interesting approach from a memory perspec-

tive is the save memory Sparse-Pairwise approach. This is the only approach where the total memory
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space required for input values is directly related to the matrix density. This means that if the density is

very low, the storage space required to store the data will be low. However, from a computational point

of view, compressing data by both rows and columns is computationally more demanding than the

Sparse-Pairwise approach adapted from the classical matrix approach. If there is a need to save even

more memory, it is possible to compress the incidence matrix in SGP format [219], a compression

pattern that lets you quickly toggle between row and column compression in exchange for a certain

additional computation.

Regarding the computational complexity required to build the co-occurrence matrix, the two

Sparse-Pairwise approaches are equivalent in complexity. The dense symmetrical dot product approach

is the only one where the complexity does not depend on the density d. Sparse-Pairwise approaches

have smaller complexities than the sparse symmetrical dot product and Pairwise approaches. This

is due to the fact that d ∈ [0, 1] and therefore d2 ≤ d. While d < 1, our proposal Sparse-Pairwise

approach is the most interesting in terms of computational complexity. In the next section, we will

verify these complexities in practice, which presents our experiments.

Name instances Features nnz Sparsity

Anonymous MS Web [29] 37 711 294 999 974 99.11%
Criteo 200 000 206 10 555 469 74.3799%
Kasandr [251] 2 158 860 291 486 15 844 718 99,9974%

Table 4.4: Datasets overview.

4.7 Experimental results

To validate our cost analysis and check the performance of our Sparse-Pairwise approach, we experi-

mented with implementing the 4 approaches described above in C++ and with MPI. In section 4.7.1,

we will be describing our experimental environment. In 4.7.2 section, we will use a dataset generator

to independently vary different parameters to see how the different approaches perform. Finally, in

4.7.3 section, we will look at the performance of the different approaches with various datasets from

real-world applications.
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4.7.1 Experimentation environment and datasets

Our working environment is as follows: we have at our disposal 25 nodes comprising 2 Intel Xeon

Gold 6230 20 cores @ 2.1 GHz (Cascade Lake). This enabled us to distribute calculations over a

maximum of 1000 cores. Each compute node has a RAM capacity of 192GB. The Operating System is

CentOS 7.9.2009 and the network technology is an Intel Omni-Path Architecture network 100 Gbit/s.

Our disk storage capacity is 500 GB. It is a Spectrum Scale GPFS parallel file system that allows 9

GB/s input/output rate.

To be able to test co-occurrence matrix construction approaches accurately and under different

conditions, we have developed a Boolean dataset generator. The algorithm 8 shows how we can build

a dataset with a defined size and sparsity. Parameters k and n are respectively the number of instances

and the number of features we want in the dataset. After generating an empty dataset of the desired

size on line 1, we use the parameter d to fill our dataset according to the expected density. By drawing

a random number between 0 and 1 for each element in the dataset, we add non-zero elements to the

dataset with a probability of d (line 3-6). The value of parameter d is included in the interval [0, 1].

Algorithm 8 Dataset generator.
Input: k the number of elements in the dataset, n the numbers of dataset features, d the expected

density of the dataset
Output: A dataset D

1: D ← create k vectors of size n and initialize all elements to 0
2: for each element e in D do
3: r ← Random number in [0, 1]
4: if r > d then
5: Change the value of e to 1
6: end if
7: end for
8: return D

We also chose to use three datasets for our experiments. An overview of the characteristics of these

datasets is available in table 4.4. We selected the Anonymous MS Web dataset for its low density. In

contrast, Criteo is a relatively high-density dataset. Finally, the last dataset, Kasandr, will enable us to

see the scalability of the approaches thanks to its large size.
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4.7.2 Efficiency and scalability

In order to test co-occurrence methods, we used the generator introduced in 4.7.1 to vary the parameters

one by one and observe the resulting variations in execution time to construct the co-occurrence matrix.

This will also enable us to progressively verify that the results are consistent with the complexity

analysis performed in section 4 and to see the prevalence of Sparse-Pairwise approach relative to other

approaches.

Memory complexity analysis

Approach Theoretical
memory
requirements

implementation
memory
allocation

Dense SDP 12.649× 105 12.652× 105

Sparse SDP 2.20× 105 2.57× 105

Pairwise 200.0× 105 200.0× 105

Sparse-Pairwise 2.20× 105 2.57× 105

Table 4.5: Memory complexity for each approach implementation.

The memory complexity of our implementation is shown in the table 4.5. The theoretical values

according to the table 4.3 are also given for comparison. In this example, the environment parameters

have been set as follows: n = 100000, k = 200, p = 1000 and d = 1%. As the memory required to

store the co-occurrence matrix is the same for all approaches, only the memory required to store the

input data has been taken into account in this table.

For the Sparse SDP and Sparse-Pairwise approaches, we observe a fairly large difference with the

theoretical value. This is due to our sparse matrix storage format. Using the ELLPACK format, we

initialize an array larger than the number of non-zero values when the distribution of non-zero values

is not perfectly distributed between the rows. The slight difference in complexity of the Dense SDP

approach is due to the fact that
√
n is rounded up to the nearest integer during load balancing.

For each method implementation, we used a vector of size p to store the index of the first row of

the block associated with each matrix. This buffer vector is used to distribute the data to ensure good
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load balancing. However, the additional memory cost required to store this information is very low.

We can see that approaches using sparsity require the least memory space. We also observe that the

pairwise approach is very memory-intensive, making it difficult to use with very large datasets.

Density d

Figure 4.8 shows the execution times of the different approaches as a function of dataset density. The

figure shows that all the approaches vary as a function of density except the dense symmetrical dot

product approach. The results have been deliberately zoomed in on the lowest curves, removing the

Pairwise approach, whose results are very high when the density exceeds 0.2.
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Figure 4.8: Execution time comparison between the different pairwise and the matrix approaches to
build the co-occurrence matrix in the function of the sparsity.

The Sparse symmetrical dot product approach performs better than the dense one when the density

is less than 0.7. Similarly, the Pairwise approach performs better when the density is less than 0.2.

We observe that execution times follow a curve in a similar way to the cost analysis predictions. We

observe that execution times increase linearly as a function of density with the sparse symmetrical dot

product approach. The execution times for the Sparse-Pairwise approach follow a parabolic pattern,

confirming the squared complexity according to density. The Sparse-Pairwise approach achieves the
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fastest execution times regardless of density in the [0.1, 0.9] range.

To take a more detailed study of the performance of the approaches at low density, we experimented

as function of density in the interval [0, 0.1]. The results are given in figure 4.9. The results in this

figure show that even with a low density, the Sparse-Pairwise approach is the most interesting in terms

of execution time. The Pairwise approach has about the same performance as the sparse symmetrical

dot product approach when the density is 1%.
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Figure 4.9: Execution time comparison between the different approaches to build the co-occurrence
matrix in function of the density. Zoom in the interval [0, 0.1].

The time required to build the co-occurrence matrix becomes negligible with the Sparse-Pairwise

approach when the density is very low. With a density of 1%, the execution time to build the matrix

is 0.19 seconds, while building the sparse matrix from the dataset takes 3.09 seconds.

Number of instances k

For the k parameter, which corresponds to the number of individuals in the dataset, experiments

have shown that the impact on execution time is linear. This fully verifies the cost analysis carried

out in section 4.6. Doubling k means doubling the execution time. The difference between the two

approaches is the value of the linearity coefficient. In table 4.6, we have calculated the coefficient of
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Approach k = 200 k = 2000 Coefficient

Dense SDP 4.79802 48.7221 2.440× 10−2

Sparse SDP 2.21438 22.09 1.104× 10−2

Pairwise 12.2988 119.868 5.976× 10−2

Sparse-Pairwise 0.486258 4.76849 2.379× 10−3

Table 4.6: Execution time to build the co-occurrence matrix with different approaches for two values
of k. The coefficient represents the coefficients of the linear functions of execution time.

linearity for each method between two measurements with k = 200 and k = 2000. For each approach,

this coefficient represents the additional time required when k is incremented by 1. The results were

obtained by setting the parameters p = 1000, n = 50000 and density at 30 %. It can be seen that k

has no impact on the differences in performance between the approaches. Whatever the value of k,

we observe that given the experimental conditions of the table 4.6, the Sparse-Pairwise approach is

25 times faster than the Pairwise approach, 10 times faster than the Dense symmetrical dot product

approach and also 4.6 times faster than the Sparse symmetrical dot product approach.

Number of features n

In figure 4.10, we have scaled the parameter n by setting the other variables to k = 500, p = 1000 and

fixing the density at 10 %. The figure shows execution times for n between 10000 and 100000. We

can see that all the different approaches have execution times that follow a curved trajectory with an

increase of the value of n increases. The differences are in the second-degree coefficients associated

to each curve. We can see that the slope of the curve is very slight for the Sparse-Pairwise approach

compared to the other approaches. In this configuration, the Sparse-Pairwise approach offers the best

performance, whatever the value of n.

We have shown that the performance of the Sparse-Pairwise approach is the most interesting

whatever the values of k, n and matrix density. The Sparse-Pairwise approach is scalable and well

suited over a wide range of n and k values. The efficiency of the Sparse-Pairwise approach is improved

even further with very sparse datasets, but it is still worth using regardless of density. In addition,

we have verified that the experiments match the theoretical performance in terms of computational
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Figure 4.10: Execution time for different co-occurrence matrix building approaches in the function of
the size of n.

complexity obtained in the previous section.

Number of processors p

Figure 4.11 shows execution times as a function of the number of processors p. The matrix size is set

to k = 100 and n = 100000 and the sparsity is fixed to 20%. We can see in this figure that the different

methods for building the co-occurrence matrix all have excellent scalability. The Sparse-Pairwise

approach has an efficiency of 96.9% with 1000 nodes compared with the execution time with 100

nodes, which is very good scalability. The efficiencies of the other methods are quite similar, although

the sparse SDP approach achieves 87.8%. Which makes this approach the least interesting in terms of

scalability.

The results for the study of weak scalability are shown in figure 4.12. In this figure, we varied n

and p linearly, so that each processor always has a block of the input dataset of the same size. In other

words, the problem size is fixed for each processor. In the experiments shown in figure 4.12, we set

k = 100 and n = 100× p, so the size of the block distributed to each compute node is 100× 100.

That execution time increases linearly as a function of p and n. When p (and n) are doubled,
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Figure 4.11: Strong scalability: Execution time for different co-occurrence matrix building approaches
in the function of the number of processors p.

execution time is also doubled. This verifies the computation complexity given in table 4.3. If the

complexity of n2

p
= α, then (2n)2

2p
= 2n2

p
= 2α. All else being equal, we efficiently expect execution

times to double when n and p are doubled. The experiments in figure 4.12 were performed with a

density of 5%. We have the same performances associated with this density as in figure 4.9.

4.7.3 Validation with real-case datasets

Now that we have demonstrated the efficiency of our method, we need to show that it is also working on

real-world datasets. Consequently, we will use the three datasets presented in table 4.4. We will apply

the different co-occurrence matrix building approaches to these datasets and compare performance.

The execution times for building the co-occurrence matrix for each dataset with each approach are

printed in table 4.7. The performances obtained highlight that the Sparse-Pairwise approach builds the

co-occurrence matrix fastest with all datasets. We can see that the performance of the Sparse-Pairwise

approach is just over 4 times better than the Sparse symmetrical dot product approach with the Criteo

dataset and up to over 34 times faster with the Kasandr dataset. This shows that the lower the density of
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Figure 4.12: Weak scalability: Execution time for different co-occurrence matrix building approaches
with a linear modification of n and p.

the dataset, the more effective the Sparse-Pairwise approach. Thanks to the sparse storage formats, our

approach also takes advantage of the limited memory required to store matrices. It makes it possible

to work with large datasets like Kasandr, where memory space is insufficient to store matrices densely.

Anonymous
MS Web

Criteo Kasandr

Dense SDP 3.10211 80.9875 OOM
Sparse SDP 0.349944 28.7367 80.5154
Pairwise 0.460221 170.988 OOM
Sparse-Pairwise 0.0218032 6.77173 2.33458

Table 4.7: Execution time in seconds to build the co-occurrence matrix with different approaches.
These results are obtained with p = 1000. The execution times take into account the time required to
build sparse matrices from dataset data, if necessary.

The results obtained correspond to the performance observed with the dataset generator. The

Sparse-Pairwise approach significantly reduces the execution time required to build the co-occurrence

matrix. The greater the sparsity of the dataset, the greater the performance gains. The results obtained

with Kasandr allow us to justify the scalability of the Sparse-Pairwise approach with very large
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datasets.

4.8 Conclusion

We have proposed in this chapter solutions to improve the manipulation of sparse matrices in deep

learning applications in a distributed environment. Our study, published in an international confer-

ence [217], investigates the successive multiplications between multiple sparse and dense matrices.

This research enhances the ability to manage such operations for deep learning tasks, particularly

in GNNs. Our complexity study ensures a fair distribution of both workload and communications

between the different compute nodes. By avoiding all-to-all communications for the redistribution

of data for the next multiplication, we ensure to limit network overload and favor local communica-

tions, which is particularly well suited to 2D node grids. Our method for building the co-occurrence

matrix by taking advantage of both the data sparsity and the data structure enables us to obtain this

matrix more quickly, taking full advantage of the distributed environment. Using a dataset generator,

we demonstrated the benefits of our method as a function of machine and dataset parameters, and

verified the cost analysis we had performed previously. Experiments on real-world datasets validated

the results obtained with the generator and the performance of our method. This study, method and

experiments results were published in an international conference [216].
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Chapter 5

Spectral Based Embedding Generalization

5.1 Introduction

Dimensionality reduction is a central problem in large deep learning models, as it helps to simplify

complex datasets while preserving their essential features. Many dimensionality reduction techniques

concern spectral computation based on dominant eigenpairs computation. The dominant eigenvectors

allow extracting the most relevant information of the matrix, which represents large dataset. These

eigenvectors provide the dataset’s principal axes, representing the maximum variance and minimum

error. Therefore, it is imperative that the methods used to compute the dominant eigenpairs are both

robust and efficient, ensuring reliable and accurate results even with large, sparse and complex datasets.

In this chapter, we propose a high-performance implementation of an innovative technique to

reduce the dimensionality of the embedding layer of a deep neural network. This technique is based

on a variant of the most robust existing methods for computing a few numbers of dominant eigenpairs

of a large sparse matrix. This variant allows the extraction of eigen-information of interest from a

dataset even when the eigenvalues are highly clustered. By focusing on the dominant eigenvectors, we

ensure that the most meaningful information from the data is preserved, facilitating more accurate and

efficient training in deep neural networks. Moreover, the proposed technique exhibits intrinsic parallel

characteristics, making it particularly suitable for implementation for high-performance computing

systems.
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We show the effectiveness of the proposed dimensionality reduction technique through its parallel

implementation on a high-performance cluster architecture.

Furthermore, we will see that using the proposed dimensionality reduction technique in the embed-

ding layer training provides results with almost the same level of accuracy as without dimensionality

reduction. Moreover, this technique significantly reduces the time and space complexity required to

reach a solution. Our experience with different types of datasets shows that the proposed dimension-

ality reduction technique is both fast and reliable while maintaining good data quality.

5.2 Importance of embedding initialization

We have already proposed a definition of embedding in section 2.3.3. Here we refer to the challenge

of reducing the complexity of non-numerical or unstructured data or objects by providing a dense

numerical representation suitable for deep learning models. An embedding table is used to move

from the initial data representation to the dense representation. This is a table of parameters that

can be tuned. Mathematically, the embedding table can take the form of a matrix which, by means

of a matrix-vector multiplication from the original representation, yields the dense representation in

smaller dimensions. Figure 5.1 simplifies the use of the embedding table.

Embedding�

n

(1.6, 5.7, ..., 4.3)�

n’ < n

Model

Figure 5.1: Example of graph embedding.

The way in which the embedding table is initialized has a number of influences. It accelerates

convergence. By initializing the parameters of the embedding table, taking into account the information

at our disposal, we can approach the convergence value. Also, a good initialization can make the

learning process faster by guiding the model toward meaningful gradients early on while reducing the
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risk of tending toward a local minimum, i.e. a value that is lower than at any nearby points, but not

the lowest overall.

A number of pretrained embedding layers exist, but they are often very generic and widespread,

which means they cannot capture the specific information in our dataset, and they generally need

fine-tuning to adapt to the problem, which slows down the deep learning model. Another solution

is to initialize embedding table values from scratch, by initializing all values to zero or randomly.

While this has the advantage of being simple to implement, it does not limit the risk of minimum

locality and can take a long time to train. In fact, the first results returned by these embedding tables

will be random representations that make no sense in relation to the original data. And it is this data

that will be supplied to the model so that it can make its predictions. In this way, we increase the

number of epochs needed to start getting results. A final initialization strategy, which we might call

data-specific one, consists in taking into account the data we have available before the model training

to propose an initialization that corresponds to the working environment. This will be the subject

of this chapter. We will look at how to create a coherent embedding from the information obtained

following an a priori analysis of the dataset. Thus, we begin by describing how spectral methods

work, and more specifically the MIRAMns method, in section 5.3. Then, in section 5.4, we will

propose using MIRAMns to initialize our embedding table. Finally, we will analyze the performance

and impact of this method on the performance of different deep learning models in section 5.5.

5.3 Spectral methods to compute dominant eigenvectors

We saw in the previous sections that the eigenproblem is the basis of many dimensionality reduction

techniques. We recall that for a square n-size matrix A, λi and the vector ui are the i-th eigenvalue

and its associated eigenvector if they satisfy

A · ui = λi · ui (P)

for i = 1, . . . , n. In many applications, including those requiring dimensionality reduction, we need

to compute only a small number k of dominant eigenvalues and their associated eigenvectors. This
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number represents the reduced dimension of the n-dimensional space in which the original problemPn

is defined. In this section, we present IRAM, the most robust numerical method for the computation of

dominants eigenpairs whenA is a very large size matrix of general structure, and its variant MIRAMns

which allows to extract the dominant eigenvalues of A even when they are strongly clustered.

5.3.1 Restarted projection methods

The restarted projection methods are commonly used techniques for solving very large and sparse

linear algebra problems. The general idea behind these methods is to project the very high-dimensional

problem into a reduced-dimensional space. We project the problem in a reduced dimension and use

its solution to define approximations for our original problem. This first approximation is then refined

through restarting cycles until a sufficiently accurate approximation is obtained to find a solution to

the initial very large problem. We will focus here on restarted projection methods for calculating

eigenelements.

Projection into a subspace

To project a problem of large size n into a subspace, we start by choosing an initial subspace of

dimension m with m ≪ n. Let’s project our n-dimensional problem Pn into the m-size subspace.

This projected problem Pm is in a space of more reasonable dimension. It is now possible to use

methods to solve the Pm problem that could not be applied to Pn due to its very large size. Once the

Pm problem has been solved, we return to dimensionn to obtain an approximation of the Pn problem.

Restart process for iteration

The restart process is the core of the iteration process. Starting from the initial subspace, projection into

the subspace provides an approximation to then-dimensional problem. However, this approximation is

highly dependent on the initial conditions. If the accuracy of the approximation is insufficient, we will

redefine a new projection subspace to replace the previous one. Therefore, we use the results obtained

to find a subspace which increases condition number. Once this new subspace has been defined, we

start a new iteration. The process is repeated iteratively until sufficient precision is achieved.
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Figure 5.2: Overview of restarted projection methods.

Even if the number of operations is virtually unknown and potentially infinite, iterative methods

can in most cases deliver results quickly with large matrices. The desired error ϵ that stops the iterative

loop gives some control over the time needed to achieve the desired accuracy. Iterative algorithms

are generally built around a succession of matrix operations, which are simple to implement and

well-suited to parallel architectures. As matrix operations are very well adapted to a parallel and

distributed environment, parallelization of these iterative methods generally enables good efficiency

to be achieved in a distributed environment.

Iterative methods are, at the same time, subject to a number of limitations that need to be taken

into account. Convergence is one possible problem. In some cases, the matrix may converge very

slowly, or even not at all. This risk must be taken into consideration and minimized. The results

may lack precision. Depending on how the method converges, the accuracy may be lower, and the

approximation obtained with the iterative method will be relatively distant from the desired solution.

Finally, the last constraint of iterative methods is the high sensitivity of the results to initial conditions.

The speed of convergence and the accuracy of the approximation can be strongly influenced by the

properties of the matrix and the initial conditions of the method. The choice of search subspace and

initial vector values, for example, are factors to be modified and adjusted to ensure fast, accurate
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convergence.

5.3.2 Krylov subspaces

A Krylov subspace is defined as the vector space generated by the successive powers of a matrix A

multiplied by a normalized initial vector v. Let

Km(A,v1) = span(v1,A · v1, . . . ,A
m−1 · v1) (5.1)

be the m-th Krylov subspace with v1 = v
∥v∥2

. This set of m vectors forms a basis for the Krylov

subspace.

Krylov subspaces are particularly well suited to the very large Pn problem. This is because

calculating the basis vectors requires no matrix-matrix multiplication, just a succession of matrix-

vector multiplications. Given the vector v1 as the first vector of the Krylov subspace basis, we multiply

the last vector by A to obtain the next vector and so on.

The matrix powers quickly become numerically unstable, as the vectors Ai · v and Ai+1 · v tend

to be parallel as i increases, making the basis vectors linearly dependent. This is why methods based

on Krylov subspace are generally based on an orthogonalization process. Extracting an orthogonal

basis by the Gram-Schmidt process is the basis of Arnoldi’s projection method.

Arnoldi method The Arnoldi method is an efficient technique which permits to compute an ap-

proximation of desired dominant eigenvalues of an n-size matrix A. Arnoldi’s projection is a simple

sequence of matrix operations used to obtain the projection of a Pn problem into the Krylov subspace

Km [8]. This projection is represented by

A · V m = V m ·Hm + fm · eT
m (5.2)

where Hm is the problem matrix projected into the subspace of size m with Hm · yi = λi · yi,

V m = {v1,v2, . . . ,vm} is an orthonormal basis of the Krylov subspace Km, fm is the error vector

and em is the m-th vector of the canonical basis of Cm.
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Arnoldi’s method are highly dependent on the initialization of the initial vector and the size of

the search subspace. Many techniques have been proposed to improve the approximation solutions.

Krylov subspace eigenvalue algorithms for large matrices can be improved by restarting strategies [17].

Solutions for restarting an Arnoldi projection with a better subspace have clearly improved the

performance of the Arnoldi method. This restart consists in defining a new initial vector from the

information available to improve convergence. Among these solutions are those with explicit restart,

noted ERAM for Explicitly restarted Arnoldi method. Saad [236] was the first to propose a restart

by building the initial vector as an explicit linear combination of the Ritz vectors calculated during

the previous iterations. The Ritz vectors are the approximate vectors that are used as the eigenvector

solution of the initial Pn problem. Despite being easy to understand and use, explicit restarting is not

always effective. Finding the right linear combination of previously calculated vectors is not an easy

task. The more complex the combination, the greater the cost of restarting. What’s more, explicit

restarting is limited by the rounding errors associated with the previously calculated Ritz vectors. The

new initial vector is an increasingly large sum of errors. These limits can be bypassed with an implicit

restart.

5.3.3 IRAM

The first implicitly restart Arnoldi method has been proposed by Sorensen [253]. The algorithm is

detailed in Algorithm 9. The difference with other restart methods is that we do not explicitly redefine

a new vector to start a new iteration. Instead, the algorithm uses an implicitly shifted QR iteration

to keep only the part of the spectrum of interest. This gives a good approximation of the desired

eigenvalues of A without having to recalculate the whole spectrum at each iteration.

It uses the QR shifted algorithm on a small matrix which is a representation of A in the projection

subspace. This lets us restart a new iteration of Arnoldi’s method with an efficient and numerically

stable formulation [247].

IRAM’s implicit restarts make this method robust, as they maintain numerical stability iteration

after iteration. Since IRAM does not recalculate the entire spectrum at each iteration, the IRAM

approach significantly reduces the computational costs involved in solving eigenvalue problems.
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Although the implicit restart approach has been clearly confirmed to be more efficient than the explicit

restart approach [200], the IRAM approach remains complex to implement due to the choice of

subspace size.

Algorithm 9 Implicitly restarted Arnoldi method (IRAM) algorithm.

Input: A the initial matrix, V m the matrix of orthogonal basis issued from the Arnoldi factorization,
fm the residual vector with AV m = V mHm + fme

T
m the m-steps Arnoldi factorization

Output: The approximate k dominant eigen-elements of A
1: for iterate until convergence do
2: Hm ← the projected matrix of A issued from the Arnoldi factorization
3: Compute the eigenvalues and their associated eigenvectors of Hm

4: Compute residual norms
5: if convergence then stop
6: Compute Shifted QR to push important information in the top left-hand corner of the matrix
7: Truncate this new Arnoldi basis of size k
8: Begging Arnoldi factorization with the k-step and add additional steps of the Arnoldi process

to obtain the new m-size basis V m

9: end for

5.3.4 MIRAMns

MIRAMns [247], which means Multiple implicitly restarted Arnoldi Method with nested subspaces,

proposes an improvement on the IRAM approach by taking into account not only the initial subspace but

also a set of nested subspace to improve the quality of the subspace when restarting. Instead of simply

projecting into the associated Krylov subspace, MIRAMns will project into several Krylov subspaces

of different sizes. The method then selects the subspace noted mbest in which the approximation of

the Ritz elements is best, i.e. the subspace that provides the most accurate approximations to the Pn

problem.. Then, continue execution as IRAM by applying the shifted QR algorithm to the selected

subspace Kmbest . Let l be the number of Krylov subspaces explored and mi each of these subspaces

with i = 1, 2, . . . , l and m1 < m2 < <̇ml. The properties of Krylov subspaces give the following

nesting relationship:

Km1 ⊂ Km2 ⊂ · · · ⊂ Kml−1
⊂ Kml

(5.3)

In other words, the computation of the Krylov subspace of size ml is iteratively built up by passing

130



Algorithm 10 Multiple implicitly restarted Arnoldi method with nested subspaces (MIRAMns).

Input: A the initial matrix, V mi
the matrix of orthogonal basis issued from the Arnoldi factorization,

fmi
the residual vector with AV mi

= V mi
Hmi

+ fmi
eT
mi

the mi-steps Arnoldi factorization
with i = 1, 2, ..., l

Output: The approximate k dominant eigen-elements of A
1: for it until convergence do
2: for i← 1, 2, ..., l do
3: Hmi

← the projected matrix of A issued from the Arnoldi factorization in the subspace mi

4: Compute the eigenvalues and their associated eigenvectors of Hm

5: Compute residual norms
6: if convergence then stop
7: end for
8: Select mbest the best subspace size
9: Compute Shifted QR to push important information in the top left-hand corner of the matrix

10: Truncate this new Arnoldi basis of size k
11: Begging Arnoldi factorization with the k-step and add additional steps of the Arnoldi process

to obtain the new mbest-size basis V mbest

12: end for

through the smaller subspaces of size m1,m2,ml−1. MIRAM is computationally equivalent to the

IRAM algorithm for subspace sizeml, with the addition of a few additional steps to check the accuracy

of the intermediate subspaces when constructing the Krylov subspace Kml
. In this way, MIRAMns

can explore a larger number of spaces at a very low computational overhead, considerably improving

the convergence of the iterative method. The algorithm 10 detail MIRAMns.

MIRAMns provides good approximations of the desired eigenvalues and eigenvectors, even with

very large dataset. Thanks to its implicit restart system, which optimizes both the subspace size and

the initial vector, the application of Arnoldi’s method is all the simpler and more generalizable.

MIRAMns is composed of common matrix linear algebra operations. It is therefore a very well-

studied operation with very good implementation in a distributed environment [217]. In the following

section, we propose an embedding using this method.

5.4 Embedding initialization from dominant eigenvectors

In this section, we propose a solution for building a consistent embedding that can be applied to a wide

range of data structures, thereby reducing the size of the input data and, at the same time, the cost of

131



Build matrix 
representation

Dataset Dimension reduction Model layers

Apply MIRAMns to 
build dominant 

eigenvalues

Extract associated
eigenvectors

AI Frameworks

HPC system

Used for initialization

Figure 5.3: Overview of the proposed method to initialize embedding from eigenvectors associated to
dominant eigenvalues.

training the model. We propose to extract the eigenvectors associated with the dominant eigenvalues of

a matrix representing the dataset and then use these dominant eigenvectors to construct an embedding

table. We will also discuss the choice of target embedding size for the reduction of dimension.

The figure 5.3 is an overview of the method.

5.4.1 Embedding strategy from data representation

We need to find a matrix representation of the data which can then be used as the initial matrix in

the MIRAMns algorithm. As the dataset cannot generally be used as an initial matrix, it is possible

to build a square non-Hermitian matrix which will capture a large part of the information on the data

topology. The matrix to be built should be the same size as the number of features in the dataset, since

the eigenvectors we extract will reduce the number of features.

Below are a few possible representations that can be used to apply the rest of the method.
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Similarity matrix

The similarity matrix is a square matrix representing the similarity coefficient between two fea-

tures [101]. It is a matrix used in many fields to detect features that are similar to each other. Each

index is associated with a feature, and the element Ai,j contains the similarity score between the

feature i and the feature j. In this way, the similarity matrix is symmetrical and all the elements on its

diagonal Ai,i = 1.

There are different ways of measuring similarity coefficients. Geometrically, we use the distance

between features or the angle between feature vectors in high-dimensional space. The similarity

matrix has the advantage of being bounded. All non-zero elements of this matrix lie within the

interval [−1, 1].

Co-occurrence matrix

The co-occurrence matrix [188] is a matrix that depicts the frequency of co-occurrence of pairs of

items in a dataset. This matrix provides information about the relationships and patterns between items

in a dataset. Each row and column with the same index represent a unique item, and the cells of the

matrix store the frequency or count of how often two items co-occur together in the dataset. Initially

used for visualizing co-citations [190], its use has become very popular in information science [176]

for tasks like finding associations, identifying patterns, calculating similarity measures and building

recommendation systems.

In NLP, a co-occurrence matrix can be used as the basis for numerical analysis of how words or

word pairs appear together within a given corpus. For example, the co-occurrence matrix plays a

crucial role in the GloVe [215], a neural network-based algorithm used to generate word embedding,

by providing the statistical information necessary to learn the word embeddings through the neural

network training process. The co-occurrence matrix also has a major role in different topic models

like LDA [223, 21] or PLSA [183]. The co-occurrence matrix is thus a good representation to prepare

the embedding layer.
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Co-variance matrix

Another representation is the covariance matrix. A covariance matrix is a square matrix containing

the variances (on the diagonals) and co-variances associated with several variables. It is a positive

symmetrical matrix that visualizes the dependencies between different variables. This matrix is used

to reduce the dimension of the data with principal component analysis [187].

The variance [281] of a variable x is defined as

Var(x) = E((x− E(x)2)) = E(x2)− (E(x))2 (5.4)

The covariance of two variables x and y is defined by [77]

Cov(x, y) = E((x− E(x))(y − E(y))) (5.5)

with E(x) is the expectation value of the variable x.

5.4.2 Compute and build the embedding table from eigenvectors

Now that we have a matrix representation of our dataset, let’s see how to initialize an embedding table

from this matrix. Let’s call this square matrix A. We will apply the MIRAMns algorithm with A

as the initial matrix. The fact that we can use several sizes of search subspaces means that we can

maximize the chances of convergence quickly and correctly, compared with the traditional approach

of setting the size of the search subspace to 2k [171, 254]. We also fix the desired eigenelements as

k the desired embedding size. We will discuss how to choose the size of k in the section 5.4.3. The

choice of subspace sizes was discussed by Shahzadeh et al. [247].

MIRAMns gives us an approximation of the k dominant eigenvectors. We will use these k vectors

to perform a k-dimensional embedding of our input data. Therefore, we will initialize the elements

of the embedding table with the values of the dominant eigenvectors. In this way, each element

of the vector output from the dimension reduction will correspond to the value of the input data

projected in the direction of the associated eigenvector. The overall result is the projection into the
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lower-dimensional subset k.

Once the embedding matrix has been defined, the cost of embedding the input data is equivalent

to the cost of multiplication between two matrices, or matrix-vector multiplication if only one element

needs to be embedded.

5.4.3 How to choose the right dimension for reduction?

The dimension reduction is a compromise between speed and accuracy. Find a good approximation

of embedding size is quite difficult. A smaller dimension reduces the computing power required to

process the data. It is therefore in our interest to reduce the dimension as much as possible. However,

the quality of the data must be sufficient to represent the situation and enable the model to make a

correct prediction. In general, variance is used to assess the quality of dimension reduction. The

greater the variance, the more the embedded vector will represent the complexity of the input data.

A frequently used approach is to consider the proportion of variance explained by the k dominant

eigenvectors. Given that the objective of dimension reduction is to retain a very large proportion of

the dataset’s information. We can therefore set a threshold of 0 ≤ α ≤ 1 and determine k in such

a way that the k dominant eigenvectors explain at least a variance equivalence to α. The thresholds

generally used are 80%, 90% and 95%. We use the Covariance matrix associated with the dataset to

calculate the variance associated with each element. The sum of the elements on the diagonal gives the

total variance. The eigenvector associated with the dominant eigenvalue explains the most variance.

Simply cumulate the variances associated with the dominant eigenvalues until enough variance has

been explained and choose the number of features that at least capture a desired percentage of variance

α.

We said in the previous paragraph that the more dominant the eigenvalues, the greater the variance

explained by them. Generally speaking, the first eigenvalues explain a lot of variance, then this

decreases rapidly. So the difference in variance explained by eigenvalues i and i + 1 diminishes

rapidly. Let’s denote σi the variance explained by the dominant eigenvalue i. We can then fix k so

that σk − σk+1 < ϵ.

Another technique for deciding the size of the embedding dimension is the permutation test [199].

135



The idea is to apply random permutations of the data and then compare the variances explained by

the dominant eigenvectors before and after the permutations. The permutations will tend to balance

the variance explained by each dominant eigenelement. The variance explained by the first dominant

eigenvalues will decrease with the permutations, while the variance explained by the following ones

will increase. We can choose k to keep only those eigenvalues that explain more variance before the

permutation than after. The limitation of this approach is that it depends on randomness. Different

permutations will affect the variance explained differently. We usually run several tests with different

random permutations. We also need to define the optimal number of permutations, depending on the

size of the dataset, which will have an impact on the variance explained.

5.5 Experiments

To see the impact of a dimension reduction based on eigenvectors associated with dominant eigenval-

ues, we experimented with different datasets. In the part 5.5.1, we will be describing our experimental

environment and then observing the impact of dimension reduction on performance. Then, we will

evaluate our implementation and test it with real-case datasets and models.

5.5.1 Experimentation environment and datasets

Our working environment is as follows: once again, we used the Ruche CPU cluster to compute the

matrix representation of the dataset and to compute MIRAMns algorithm in a distributed environment.

We have at our disposition 25 nodes comprising 2 Intel Xeon Gold 6230 20 cores @ 2.1 GHz (Cascade

Lake). This enabled us to distribute calculations over a maximum of 1000 cores. Each compute node

has a RAM capacity of 192GB. The Operating System is CentOS 7.9.2009 and the network technology

is an Intel Omni-Path Architecture network 100 Gbit/s. Our disk storage capacity is 500 GB. It is a

Spectrum Scale GPFS parallel file system that allows 9 GB/s input/output rate. To train and evaluate

the models of neural networks, we used a computer with a 4-core i7-1165G7 processor running at

2.80GHz and an Intel IRIS Xe GPU running at 1300MHz. The computer is equipped with an SSD

disk with read and write speeds of 2.200 GB/s and 1.200 GB/s respectively.
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Type Name Features Instances Classes

Numerical
Date fruit 34 898 7
Fetal Health 21 2126 3
Radar 175 325834 7

Images
MNIST 784 70000 10
CIFAR-10 3072 60000 10
CIFAR-100 3072 60000 100

Table 5.1: Datasets Overview.

5.5.2 Evaluation of MIRAMns distributed implementation

We have implemented MIRAMns for the CPU cluster, using MPI for communication between com-

putation nodes. We used the Eigen [104, 105] library to store matrices and vectors. We also used

this library to process elementary matrix operations. We carried out a set of experiments to test the

performance of the MIRAMns implementation. We will look at and discuss the results in this section.

Matrix Size of matrix nonzero elements Density
Epinions [175] 75,879 508,837 8.838× 10−2

Facebook [174] 4,039 88,234 5.409× 10−3

Table 5.2: General information about the test matrices.

We made comparisons between the IRAM method and the MIRAMns method. We have also

performed executions by storing the dataset matrix in a sparse or dense format. These comparisons

were made with the Facebook (figure 5.7) and Epinions (figure 5.8) datasets, and the covariance matrix

of the datasets CIFAR-10 (figure 5.4), CIFAR-100 (figure 5.5), MNIST (figure 5.6). Information on

each of these dataset is available in table 5.1 and 5.2.

Execution times are comparable for all methods with covariance matrices (see figures 5.4a, 5.5a

and 5.6a). Since the matrix density is 100%, Eigen does not seem to compress the sparse matrix and

treats it as dense. If the matrix were compressed into a sparse format, the execution time would be

significantly higher than with the dense format, due to the high density (see figure 4.1a). We can see

that the speed-up is greater with the IRAM method than with MIRAMns (figures 5.4b, 5.5b and 5.6b).

This is due to the fact that the additional computations performed at each operation are not parallel, but

are performed by all compute nodes simultaneously in a sequential way. This increases the proportion

of work that is not parallelized, which has an impact on speed-up and method efficiency.
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Figure 5.4: Comparison of execution time, speedup and efficiency for IRAM and IRAMns executions
for the covariance matrix of the CIFAR-10 dataset. The figures illustrate the performance differences
between dense and sparse storage matrices.

We can also see on figures 5.4b, 5.5b, 5.6b and 5.7b that we have a speedup peak that comes down

with more compute nodes. This is explained by the fact that matrices are relatively small and the

workload distributed to each node is not sufficient to compensate for the additional communications

induced by the increase in the number of compute nodes. We can see on figure 5.6b that this

performance peak is obtained with 32 compute nodes with the MNIST covariance matrix, whereas

the peak is observed with 256 nodes with the CIFAR-10 and CIFAR-100 dataset matrices (figure 5.4b

and 5.5b). This is consistent with the fact that MNIST has a much smaller covariance matrix than the

other two datasets (784 vs. 3072).

With the Facebook dataset, figure 5.7, the matrix to be processed is sparse (density = 5.409×10−3),

which has a strong impact on execution times. These are very low compared to execution times with

the dense matrix. This also has an impact on speedup and efficiency. Indeed, as the workload is

lower, the use of more compute nodes will have a much less significant impact. However, using

a sparse compression format to handle the matrix means that larger matrices can be handled and

manipulate. This is the case with the Epinions dataset on figure 5.8. The dataset matrix is too

large and causes an out-of-memory condition when we try to load it and treat it as dense with few

nodes. We have to use 32 compute nodes before the dense blocks of the matrix can be stored in the

nodes’ memory. Speedup and efficiency are therefore computed in relation to the first value obtained.
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Figure 5.5: Comparison of execution time, speedup and efficiency for IRAM and IRAMns executions
for the covariance matrix of the CIFAR-100 dataset. The figures illustrate the performance differences
between dense and sparse storage matrices.

Once again, we observe a high speedup with the dense format, again due to the fact that most of the

execution time is devoted to compute matrix operations with the dense matrix, and that this operation

is easily parallelizable with high efficiency. The advantage of compressing matrices into sparse format

is that you can process larger matrices while reducing the costs associated with matrix operations.

Overall, MIRAMns requires slightly more computational power, which translates into a relatively low

overhead in terms of execution time. This surplus is directly linked to the number of subspaces to be

explored, which is a user choice. However, it does have an impact on speedup and efficiency when the

number of compute nodes is increased. This is because the extra workload of MIRAMns compared to

IRAM is not parallelizable and is part of the proportion of code that is run sequentially on all nodes

simultaneously. The workload is too low to consider parallelizing this part of the code, since it is not

sufficient to cover the additional communication that will be generated by parallelization.

5.5.3 Results with real-case datasets

Analysis of dimension reduction on performance.

We used three different numerical classification datasets of different sizes: Date fruits [155], Fetal

Health [161] and Radar [1]. We also use MNIST [52] and CIFAR-10 [157] image dataset to Information
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Figure 5.6: Comparison of execution time, speedup and efficiency for IRAM and IRAMns executions
for the covariance matrix of the MNIST dataset. The figures illustrate the performance differences
between dense and sparse storage matrices.

on these datasets is available in Table 5.1. For all experiments, we randomly divided the dataset into

two sets for training and testing. The set for model performance validation represents 20% of the

total dataset for numerical dataset. For image dataset, we used the Keras data split for training

and test subset. The test set is composed of 10000 images. Only the training dataset was used to

build the data matrix representation. The format used to represent the data is the feature co-variance

matrix. MIRAMns was run on these matrices. The implementation of the algorithm is based on the

Eigen [104] library for linear algebra and matrix calculation operations. We used 100 computational

cores for each execution of MIRAMns.

For each model associated with each dataset, we chose the hyperparameter combination that gave

the highest accuracy following a hyperparameter tuning phase with the model without any dimension

reduction. All hyperparameters were fixed and no further hyperparameter tuning was performed with

the models with dimension reduction and smaller size.

We used a multi-layer perceptron (MLP) [116] composed of 5 hidden layers for numerical dataset

prediction and 2 hidden layers for image classification dataset. The result of this MLP is used to make

a prediction about the class of the given input element. The size of the input layer is modified to match

the size of the input data. We have built different models with different numbers of perceptrons on

each layer, so as to modify the number of parameters making up the neural networks. The composition
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Figure 5.7: Comparison of execution time, speedup and efficiency for IRAM and IRAMns executions
for the Facebook dataset. The figures illustrate the performance differences between dense and sparse
storage matrices.

Dataset type Model Hidden sizes Total params #

Numerical

Large 512, 512, 512, 512, 256 ≈ 9.39× 105

Medium 256, 256, 256, 256, 128 ≈ 2.40× 105

Low 64, 64, 64, 64, 32 ≈ 1.7× 104

Very low 32, 32, 32, 32, 16 ≈ 4.9× 103

Images

Large 512, 512 ≈ 1.841× 106

Medium 256, 256 ≈ 8.55× 105

Low 64, 64 ≈ 2.01× 105

Very low 32, 32 ≈ 9.97× 104

Table 5.3: Hidden size and approximation of the number of parameters for each MLP models.

of the number of perceptrons in each layer of each model is available in table 5.3. This variation in

size will enable us to see the evolution of accuracy when the model is relatively too small for the task

in question. It will also allow us to see the impact of the dimension reduction described in the previous

section.

Figures 5.9 and 5.10 plot the accuracy obtained with the test set with different model sizes and

different embedding sizes respectively for the Date fruit and Fetal Health datasets. Performances

without any dimension reduction have been added in clear on the curves. It can be seen from these

two figures that performance as a function of embedding size follows a logarithmic curve. Adding

an extra dimension when the number of dimensions is low results in significant performance gains.

Above a certain size, adding a new dimension to represent the data no longer significantly increases
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Figure 5.8: Comparison of execution time, speedup and efficiency for IRAM and IRAMns executions
for the Epinions social network dataset. The figures illustrate the performance differences between
dense and sparse storage matrices.

performance.

We can also see from these figures that model performance is globally proportional to the number

of parameters. The larger the model, the more precise the learning process. We can also see that

performance with dimension reduction is relatively good compared to performance without dimension

reduction. We can see from the Date fruit dataset in figure 5.9 that dimension reduction improves

performance compared to the model without dimension reduction. This is particularly true for small

models.

Large size model Medium size model
Input dimension 175 10 175 10
Number of parameters 1,143,815 1,059,847 275,975 233,991
Training Exec. time (s) 1180.81 1146.43 760.51 727.466
Test accuracy (%) 98.772 98.406 98.958 98.390

Table 5.4: Results of Radar dataset with embedding dimension reduction to 10.

Image classification

MLP networks are not the most suitable models for image processing. Because all neurons in each

layer are fully connected to all neurons in the previous and next layers, MLPs are very expensive to

train with large images. Moreover, they are not optimal for understanding and finding general patterns
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Figure 5.9: Comparison of test accuracy with the Date fruit dataset with different model sizes as a
function of embedding size.

in images. To get the best accuracy with this type of data, we prefer to use other types of neural

network such as convolution networks, which have a structure that limits the exponential growth in the

number of parameters with very large data sizes [221] and are effective for generalizing patterns during

the learning phase [85]. The following results are not intended to achieve the best possible accuracy

with these datasets, but to compare the impact of dimension reduction with dominant eigenvectors on

model performance.

Figure 5.11 compares performance with the MNIST dataset. MNIST is a collection of handwritten

black-and-white figures. Each image represents one digit and is normalized and centered, measuring

28 pixels on a side. MNIST was designed to provide a consistent and homogeneous database for the

scientific community, and has become a reference dataset in the field of deep learning for evaluating

the performance of handwriting recognition models.

The results obtained with our MLP implementation on this dataset are very impressive. As with
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Figure 5.10: Comparison of test accuracy with the Fetal Health dataset with different model sizes as
a function of embedding size.

numerical datasets, the larger the model, the greater the accuracy. All models, even the very smallest,

achieve an accuracy of over 96%. With larger models, performance as the reduction dimension

increases tends towards performance without dimension reduction. It is therefore in our interest to

use data embedding with dominant eigenvectors to significantly reduce training time. As a reminder,

a smaller input dimension has an impact on model size and training speed. With MNIST, the time to

train the large model without dimension reduction is 62.7 seconds. With 28-dimension embedding,

which offers the same accuracy, the training time is 52.3 seconds. Dimension reduction reduces model

training time by 20%. The very small size of the model means that it cannot match the performance

obtained without dimension reduction. .

Figure 5.12 compares performance with different model sizes on the CIFAR-10 dataset. This is a

set of 32 by 32 color images divided into 10 classes. The input dimension is therefore 3072. It can

be seen that using the dominant eigenvectors to reduce the input dimension improves the accuracy
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Figure 5.11: Comparison of test accuracy with the MNIST image dataset with different model sizes
as a function of embedding size.

of the models with CIFAR-10. While the performance of the very small model is close to random

without dimension reduction, we obtain significantly better performance with dimension reduction.

The small model achieves 40 times better performance with dimension reduction than with the very

large model and no dimension reduction. In this case, dimension reduction considerably decreases

the computation time required for training and significantly improves performance.

5.6 Conclusion and discussion

In this section, we have proposed a technique for building a consistent embedding of datasets with

different types of data structure with an high precision. By leveraging matrix representations, this

method optimizes dimensionality reduction while retaining maximum variance through dominant

eigenvectors. The MIRAMns algorithm proved instrumental in efficiently approximating eigenvec-

tors associated with dominant eigenvalues, demonstrating its capability to handle large-scale data
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Figure 5.12: Comparison of test accuracy with the CIFAR-10 image dataset with different model sizes
as a function of embedding size.

effectively.

Our experimental results underscored the significant potential of this approach to achieve high

performance with reduced input dimensions. This reduction not only streamlined the computational

process but also facilitated faster training times without compromising model accuracy. Specifically,

the experiments highlighted that embedding data using dominant eigenvectors can substantially reduce

training costs while maintaining competitive performance levels.

Overall, we have shown in this study that dimension reduction methods are effective in reducing

model sizes, enabling a good balance to be struck between model accuracy and size. The use

of dimension reduction methods to embed data in a coherent way facilitates data representation

while preserving essential variability for effective learning. Future work may explore expanding the

application of this method across diverse data types and distributed environments to further enhance

its scalability and impact.
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Chapter 6

General Conclusion

Throughout this manuscript, we have seen that to meet the challenges posed by large deep learning

models, solutions need to be implemented at all levels. On the algorithmic stage, complexity re-

duction techniques such as model compression, quantization and dimensionality reduction help lower

computational demands while maintaining performance. Moreover, certain model architectures are in-

herently more hardware-friendly; for example, transformers enable efficient parallelization due to their

self-attention mechanism, while mixture-of-experts models optimize memory usage by activating only

a subset of their parameters per inference. On the software side, modern deep learning frameworks

such as TensorFlow, PyTorch or MindSpore provide powerful tools for developing distributed models,

but managing parallelization and inter-machine communications remains a significant challenge. On

the hardware side, specialized architectures such as GPUs, TPUs and dedicated AI accelerators have

considerably improved processing capabilities. However, scaling these models on massive parallel

infrastructures, such as supercomputers, requires careful coordination between hardware, algorithms

and software.

The main objective of this thesis is to enhance the performance of large DL models by proposing

innovative solutions to reduce the costs associated with their development and training. Specifically,

by minimize the training costs of AI neural networks in massively distributed environments.
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6.1 Summary of findings

As this end, we began by exploring neural networks specially designed to process data in the form

of graphs. The irregular structure of graphs requires the use of sophisticated techniques to take into

account topological data in addition to features for prediction. The quality of a graph neural networks

depends precisely on how the graph structure information is extracted. After demonstrating the value

of deploying dropping solutions to reduce overfitting on a specific graph, we proposed RankedDrop,

a novel sampling method to improve the extraction of graph structure information. Based on spatial-

aware selection, we proposed to take into account information on the importance of graph nodes.

This information is then used to control the distribution of the random selection. Thanks to the

randomness, this makes it possible to have different graphs for training, but which remain consistent

with the structure of the basic graph. We have shown in the experiments in chapter 3 that RankedDrop

outperforms both the baseline (without dropout) and standard random dropout methods that disregard

graph structure. This is particularly the case in semi-supervised learning when the model is large.

RankedDrop allows for improving the accuracy of the 8-layers GCN by up to twice and enhancing

performance by more than 50% compared to random dropping.

As sparse BLAS constitute the computational core of large models, we study then the matrix-matrix

multiplication sequence with both sparse and dense matrices. We proposed a way of distributing the

data between the different compute nodes to ensure a low amount of communications while avoiding

all-to-all communications. This distribution meets the computational needs to deal with very large

graphs and compute large graph neural networks models.

Understanding the structure and relationships within textual data is crucial for efficiently processing

large NLP datasets, and the co-occurrence matrix serves as a fundamental tool in capturing these

relationships. We have also proposed a solution for constructing the co-occurrence matrix of an

NLP dataset rapidly, taking advantage of both data sparsity and data arithmetic. Using a dataset

generator, we were able to study the impact of different parameters on execution time and check that

these results corresponded to the cost analysis we carried out to compare methods for constructing the

co-occurrence matrix.

As explained in this thesis, dimensionality reduction is one of the most important levers for
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reducing data complexity and model size. Building upon this, we proposed a technique based on a

numerical method for constructing a coherent representation of an element in a reduced dimension.

We have based this technique on MIRAMns, a method perfectly adapted to a distributed environment

and specially designed for very large datasets. Joining numerical method of dimension reduction

to embedding allows us to guarantee a consistent initialization of the embedding while keeping a

maximum of variance, which ensures embedded vector will represent correctly the complexity of the

input data.

These contributions have allowed us to tackle the challenge of reducing the cost of large models

across various levels and contexts. They align with the broader objective of identifying and extracting

the most relevant information from data to streamline and enhance subsequent model training. By

introducing scalable solutions, we ensure their adaptability for future applications, enabling them to

handle increasingly larger datasets and operate effectively in massively distributed environments.

6.2 Perspectives

There are numerous promising directions for extending this work. In this thesis, we have begun to

apply different numerical methods to deep learning to improve performance. They allow us to obtain

more information about the data we are dealing with, in order to facilitate the processing. Whether to

help choose hyperparameter values or to support the model by improving data quality, the applications

of numerical methods are vast and promising. Dominant eigenvalues and analysis of variance can

be used to refine the choice of embedding dimensions, while spectral analysis of graphs can provide

additional information for prediction. The cost of these methods is generally low compared with the

total cost of model training, especially for very large models. It is essential to explore their potential for

reducing the model workload, either by reducing the number of iterations through faster convergence,

or by reducing the number of models to be trained during the hyper-parameter optimization phase.

Although the proposed methods are efficient in a distributed environment, it is essential to continue

improving the scalability of the methods. It would be interesting to think about the distribution of

computations for multi-level machines. This would make it possible to take into account all the
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specificities of the machine in order to design optimized and efficient methods. In addition, the

experiments we have presented in this work are intended to show that the algorithm works in a

distributed environment. A study phase to adapt these solutions to the environment actually used

today is necessary, with a multi-level analysis to use hardware accelerators on the compute nodes.
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Appendix A

Résumé en Français

A.1 Contexte et motivations

L’intelligence artificielle est aujourd’hui au cœur d’une transformation numérique de grande ampleur,

bouleversant un large éventail de secteurs, allant de la médecine à la finance, en passant par les

industries manufacturières et les technologies de l’information. En particulier, l’apprentissage profond

(Deep Learning, DL) a permis d’atteindre des performances inédites dans de nombreuses applications,

telles que la reconnaissance d’images, la traduction automatique et la modélisation du langage naturel.

Cependant, le succès grandissant du DL repose sur des modèles de plus en plus complexes, nécessitant

des quantités massives de données et une puissance de calcul exponentielle.

Les modèles d’apprentissage profond modernes et les grands modèles de langage, comme GPT-4,

BERT ou encore les réseaux neuronaux convolutionnels utilisés pour l’analyse d’images, possèdent des

milliards de paramètres. Leur entraînement repose sur des infrastructures massivement parallélisées,

exploitant des milliers d’unités de calcul spécialisées, comme les GPU (Graphics Processing Units)

ou les TPU (Tensor Processing Units).

La croissance rapide de la taille des modèles présente plusieurs défis majeurs. En premier lieu,

il y a l’explosion des coûts de calcul liés à l’entraînement de ces modèles. Ils mobilisent des

supercalculateurs pendant plusieurs semaines, voire plusieurs mois, impliquant des coûts financiers

et énergétiques considérables. Cela pose également des problèmes d’impact écologique, mais aussi
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d’accessibilité et de démocratisation. Seules quelques grandes entreprises ou puissants États sont

aujourd’hui capables de supporter les coûts liés à l’entraînement de ces modèles, ce qui limite l’accès

à ces technologies pour de nombreux laboratoires de recherche, PME et institutions académiques.

La grande taille des modèles pose également des problématiques d’extensibilité. La distribution

efficace des tâches sur des architectures massivement parallèles et distribuées est un enjeu crucial pour

optimiser le temps d’exécution, ce qui a un impact significatif sur le temps d’entraînement des modèles.

Pour cela, il faut s’assurer que les algorithmes utilisés soient adaptés à ce type d’environnement et

que leur implémentation limite les communications et assure une répartition optimale de la charge de

travail entre les différents nœuds de calcul.

L’efficacité des grands modèles dépend principalement de l’algorithme qui les décrit, ainsi que

de la qualité des données utilisées pour leur entraînement. Avant de déployer ces modèles sur des

systèmes de calcul haute performance (HPC), il est essentiel de les optimiser d’un point de vue

conceptuel. Cela signifie que, pour concevoir un modèle optimal fournissant des résultats précis

et pertinents, toutes les étapes des algorithmes correspondants doivent être optimisées, notamment

la réduction de la dimensionnalité, la prise en compte des données creuses et l’introduction d’un

parallélisme intrinsèque. Il est également crucial de disposer de données de haute qualité pour obtenir

des résultats fiables et pertinents.

En outre, pour déployer efficacement ces modèles sur des architectures haute performance et

exploiter pleinement les capacités de ces systèmes, il est indispensable d’envisager des paradigmes de

programmation parallèle et distribuée performants pour leur mise en œuvre.

Cette thèse porte sur ces deux aspects : l’optimisation du modèle et sa mise en œuvre efficace sur

des systèmes haute performance. Autrement dit, nous visons à améliorer les processus d’entraînement

à la fois par l’efficacité algorithmique et par une approche optimisée du déploiement.

Nos recherches se concentrent principalement sur l’optimisation des processus d’entraînement de

très grands réseaux neuronaux. L’accent est mis sur les méthodes et applications liées au prétraitement

des modèles, bien que les techniques de réduction de la dimensionnalité abordées dans cette thèse

puissent être appliquées à tous les niveaux des modèles de deep learning.
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A.2 Contributions

Dans le but de répondre à ces objectifs, nous avons commencé par explorer les réseaux de neurones

de DL spécialement conçus pour manipuler des graphes. En effet, les graphes sont une structure de

données largement utilisés pour représenter et modéliser des objets ainsi que les relations entre ces

objets. Les graphes ont une structure irrégulière, ce qui nécessite un traitement particulier pour en

extraire les informations topologiques. Or, la performance et la précision d’un réseau de neurones de

graphes dépendent fortement de la qualité de l’analyse de la structure du graphe.

Dans de nombreuses applications, le graphe est fixe, c’est-à-dire qu’il n’y a qu’un seul graphe et

que ce dernier ne change pas. Cela pose de sérieux problèmes de surapprentissage puisque le modèle

de réseau de neurones va s’entraîner uniquement sur cette structure et aura des difficultés à généraliser

son apprentissage à d’autres graphes lors de la phase d’inférence. Pour remédier à cela, la littérature

scientifique propose de générer, à chaque époque d’entraînement, un sous-graphe différent en retirant

aléatoirement des parties du graphe original. Cette méthode a permis d’obtenir un gain important en

performance, notamment avec les réseaux de neurones de grande taille.

C’est dans ce contexte que nous avons proposé RankedDrop, une nouvelle méthode de construction

de sous-graphes basée sur l’analyse topologique du graphe. Nous avons choisi de prendre en compte

l’importance des nœuds du graphe pour construire les sous-graphes lors de l’entraînement des modèles

de réseaux de neurones. Ces informations topologiques sont utilisées pour contrôler la distribution de

la sélection aléatoire employée pour la génération de sous-graphes. Ainsi, il est possible d’obtenir des

sous-graphes différents lors de l’entraînement, tout en conservant une cohérence avec la structure du

graphe original.

RankedDrop a été spécialement conçu pour être flexible et adaptable : il peut intégrer divers

critères afin de mieux comprendre la topologie du graphe. Il est également très général et peut

être appliqué à une multitude d’architectures de modèles de réseaux de neurones de graphes. Pour

expérimenter notre méthode, nous avons utilisé deux critères pour générer l’importance topologique

des nœuds : les scores de PageRank et le degré des nœuds. Ces deux informations complémentaires

permettent d’évaluer à la fois l’importance globale des nœuds dans la structure via PageRank et leur

importance locale en fonction du nombre de relations.
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Nos expérimentations montrent que notre méthode RankedDrop surpasse à la fois l’approche sans

modification du graphe original et l’approche basée sur la génération totalement aléatoire de sous-

graphes. RankedDrop permet d’améliorer les performances des réseaux de neurones dans toutes les

situations testées, indépendamment de la taille du modèle et de l’architecture utilisée. Son application

est particulièrement efficace en apprentissage semi-supervisé et sur des modèles de grande taille.

RankedDrop permet d’améliorer la précision des modèles à 8 couches de plus de 50 % par rapport

à une génération totalement aléatoire de sous-graphes, soit le double de précision par rapport à

l’approche naïve des réseaux de neurones.

Comme les matrices creuses sont au cœur de nombreuses méthodes et algorithmes des modèles

de grande taille, nous avons exploré l’algèbre linéaire creuse et, plus spécifiquement, son implication

dans les modèles de DL. Les matrices creuses, qui contiennent une proportion importante de valeurs

nulles et donc une faible densité de valeurs non nulles, posent des problèmes de calcul importants

en raison de leur nature non structurée. La répartition de la charge de travail dans un environnement

massivement distribué est très compliquée. Il est essentiel de relever ces défis pour garantir de bonnes

performances des modèles d’apprentissage profond dans les environnements HPC.

Pour cela, nous avons étudié la succession de multiplications matrice-matrice avec des matrices

creuses et denses. Nous avons proposé un découpage et une distribution des données qui assurent

une bonne répartition de la charge de travail entre les nœuds de calcul ainsi qu’une réduction des

communications, qui sont très gourmandes en temps. Notre distribution permet également d’éviter

les communications all-to-all, c’est-à-dire les échanges où chaque nœud doit envoyer des messages à

tous les autres nœuds de calcul. En limitant les communications localement, nous réduisons la charge

de données circulant sur l’ensemble du réseau et minimisons ainsi le risque de goulot d’étranglement

au niveau des performances.

Grâce à ces spécificités, notre découpage est particulièrement bien adapté à une grille de nœuds

de calcul, un type d’architecture de cluster couramment utilisé dans les environnements HPC. Ce type

d’architecture se caractérise par des communications limitées aux nœuds voisins, sans possibilité de

communication directe entre tous les nœuds.
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Comprendre la structure et les relations entre les données textuelles est une étape essentielle pour

traiter efficacement les jeux de données en traitement du langage naturel. La matrice de co-occurrence

est un outil fondamental pour saisir ces relations. Il s’agit d’un élément clé utilisé dans de nombreuses

méthodes de DL pour l’incorporation de mots, que l’on nommera embedding dans la suite. Par

exemple, certaines méthodes d’embedding utilisent la matrice de co-occurrence entre les mots du jeu

de données pour construire un embedding cohérent et regrouper les mots en fonction des similarités

mises en évidence par cette matrice.

La matrice de co-occurrence peut être obtenue à partir de la matrice d’incidence du jeu de données

et d’une multiplication matricielle. Cependant, les spécificités des jeux de données en traitement du

langage naturel ont la particularité de produire des matrices d’incidence à faible densité, composées

exclusivement de données booléennes.

Nous avons proposé Sparse-Pairwise, une nouvelle approche pour construire la matrice de co-

occurrence en tirant parti à la fois de la nature booléenne des données et de leur faible densité. Nous

avons réalisé une analyse théorique de complexité entre les différentes approches de construction de

la matrice de co-occurrence, en termes de temps de calcul et d’occupation mémoire. Cette analyse

montre que notre approche est la plus efficace du point de vue de la complexité en temps et qu’elle est

d’autant plus rapide que la densité de la matrice est faible, ce qui est généralement le cas dans les jeux

de données utilisés en traitement du langage naturel.

Afin de vérifier et valider notre analyse de complexité, nous avons construit un générateur de corpus

afin d’étudier précisément l’impact de chaque paramètre sur les performances. Nous avons mené une

analyse approfondie de l’extensibilité des méthodes grâce au générateur, puis testé différents ensembles

de données issus d’applications réelles pour vérifier que les résultats obtenus avec le générateur étaient

représentatifs des performances observées sur de véritables jeux de données. Nos expérimentations

ont montré que l’utilisation de notre méthode Sparse-Pairwise permet de construire la matrice de

co-occurrence jusqu’à 34 fois plus rapidement que les autres approches.

Un bon embedding doit permettre de construire une représentation capable de capturer le sens et

les relations entre les éléments du jeu de données, en les transformant en vecteurs numériques denses,

afin qu’ils puissent être utilisés comme entrée pour le reste du modèle. C’est une technique essentielle
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pour permettre aux modèles de DL de comprendre et de traiter des données à la structure complexe

de manière efficace. Encore faut-il que la représentation vectorielle en sortie de l’embedding soit

cohérente par rapport aux données initiales. Or, réussir à capter la complexité sous-jacente de ces

données dans un vecteur est une tâche difficile.

Un embedding non pertinent causerait des problèmes de cohérence des données, ce qui limiterait

le potentiel du modèle et ralentirait son apprentissage. Pour répondre à cette problématique, nous

proposons une solution d’initialisation de l’embedding qui s’appuie sur des informations extraites du

jeu de données pour fournir une représentation matricielle cohérente. Nous proposons d’utiliser les

vecteurs propres dominants pour projeter les données initiales et obtenir une représentation vectorielle

pertinente.

Cependant, l’extraction des vecteurs propres dominants n’est pas directement possible avec un

jeu de données rectangulaire classique. C’est pourquoi nous proposons d’utiliser une représentation

matricielle carrée du jeu de données, comme la matrice de co-occurrence. Les vecteurs propres

dominants permettent de maximiser la variance de la projection des données initiales et donc d’assurer

une meilleure explicabilité des données projetées.

Nous avons proposé d’utiliser la méthode MIRAMns pour trouver les vecteurs propres dominants.

Cette méthode a la particularité d’explorer différentes dimensions de sous-espaces, ce qui la rend

très robuste et permet son utilisation même lorsque les valeurs propres sont regroupées. En effet, la

capacité à converger malgré des groupes de valeurs propres permet une bonne généralisation de cette

méthode sur un large spectre de jeux de données. De plus, MIRAMns étant une méthode de projection

itérative, elle est idéalement adaptée aux problèmes de très grandes tailles. Ces caractéristiques

assurent l’extensibilité et la stabilité de cette initialisation d’embedding.

Nous avons montré, grâce à des expérimentations, que la méthode MIRAMns est adaptée aux

environnements distribués et tire profit de la faible densité des jeux de données. Enfin, nous avons

démontré, en entraînant des modèles de deep learning de différentes tailles, que l’embedding réalisé

grâce aux vecteurs propres dominants permet de conserver suffisamment d’informations pour garantir

un apprentissage cohérent. De plus, la réduction de dimension des données d’entrée simplifie les

données, facilitant ainsi leur traitement par le modèle.
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Ainsi, un bon embedding permet d’obtenir les mêmes performances qu’un modèle dix fois plus

grand sans embedding. Cela montre que notre approche d’embedding est particulièrement intéressante

pour réduire la complexité des modèles tout en assurant leurs performances.

A.3 Conclusion

Les travaux présentés dans cette thèse s’inscrivent dans une démarche d’optimisation des modèles

d’apprentissage profond à grande échelle, en traitant des problématiques liées à leur entraînement,

leur scalabilité et leur déploiement sur des architectures massivement parallèles. Nous avons proposé

des approches innovantes pour améliorer la qualité des données et l’efficacité des modèles de réseaux

neuronaux, afin de faciliter l’apprentissage sur des données non structurées ou semi-structurées.

Restructurer ou réduire la complexité de ce type de données permet d’en améliorer la qualité et

d’optimiser leur traitement par le modèle. Ces avancées ouvrent la voie à une meilleure exploitation

des ressources de calcul haute performance, tout en réduisant les coûts et l’empreinte énergétique des

entraînements massifs.

Les résultats obtenus démontrent l’impact positif de ces optimisations, tant sur la précision des

modèles que sur leur efficacité computationnelle. Ces travaux constituent ainsi une contribution

importante à la recherche en deep learning et en calcul distribué, avec des perspectives intéressantes

pour la démocratisation de l’accès aux modèles de grande échelle. Des pistes futures pourraient

notamment explorer l’intégration de ces méthodes à d’autres types d’architectures de réseaux de

neurones, ainsi que l’exploration d’autres méthodes numériques avancées pour approfondir ces travaux

à différents niveaux du modèle.

A.4 Publications

Ces travaux ont fait l’objet de publications dans des conférences internationales:

• Petit, Q. R., Li, C., & Emad, N. (2022, December). Distributed and Parallel Sparse Computing

for Very Large Graph Neural Networks. In 2022 IEEE International Conference on Big Data
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(Big Data) (pp. 6796-6798). IEEE. [217]

• Petit, Q. R., Li, C., Petiton, S. G., Chai, K., & Emad, N. (2022, December). Enhancing Graph

Convolutional Networks by Topology Sampling. In 2022 IEEE International Conference on

Big Data (Big Data) (pp. 1316-1323). IEEE. [218]

• Petit, Q., Li, C., & Emad, N. (2024, May). An Efficient and Scalable Approach to Build Co-

occurrence Matrix for DNN’s Embedding Layer. In Proceedings of the 38th ACM International

Conference on Supercomputing (ICS’24) (pp. 286-297). ACM. [216]
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Résumé:
Les modèles de très grande taille sont au-

jourd’hui utilisés dans une multitude de domaines
variés et ont permis de généraliser et de populariser
l’utilisation du Deep Learning pour de nouvelles ap-
plications. Cependant, le traitement de ces tâches
toujours plus générales a demandé une augmenta-
tion exponentielle de la taille de ces modèles, ce
qui a également nécessité une puissance de cal-
cul tout aussi importante pour les entraîner. Des
solutions innovantes doivent être trouvées et dé-
ployées pour à la fois réduire la complexité des al-
gorithmes existants et améliorer le déploiement de
ces derniers dans un environnement massivement
distribué avec des données de très grande taille.
Le développement de techniques et de méthodes
de calcul parallèle et distribué est essentiel pour
optimiser l’utilisation des ressources disponibles,
maximiser l’efficacité et réduire les coûts de cal-
cul, répondant ainsi aux exigences croissantes de
ces modèles.

C’est dans ce contexte que s’inscrit cette thèse.
Nous proposons plusieurs contributions pour ré-
duire les coûts associés à l’entraînement des grands
réseaux de neurones dans un environnement mas-
sivement distribué. Nos travaux se concentrent
principalement sur le traitement des données en
amont du modèle pour améliorer la qualité des
données, qui sont ensuite données en entrée du
modèle, dans le but de faciliter son apprentissage.
Nous nous sommes concentrés sur le traitement
des données creuses, telles que les graphes, dont
le traitement pose certains défis en raison de leurs
structures complexes et de leurs tailles potentielle-
ment très élevées. Nous proposons également de
réduire la taille des données en entrée grâce à une
réduction de dimension conservant suffisamment
d’informations pour assurer une bonne précision du
modèle tout en simplifiant les données d’entrée, ré-
duisant par la même occasion la puissance de calcul
nécessaire pour le traitement de ces données.

Title: Distributed and Parallel Computing for very Large Neural Networks
Keywords: Performance optimization, Deep Learning, High performance computing, Neural networks,
Graph computing, Recommender system

Abstract:
Very large model sizes are now a very common

feature, extending the range of applications for
Deep Learning. However, this exponential growth
in model size has led to an equally significant in-
crease in computing power requirements. Innova-
tive solutions need to be found and implemented to
optimize current algorithms, reduce their complex-
ity and make them easy to use and deploy in a mas-
sively distributed environment. The development
of parallel and distributed computing techniques
and methods to fully exploit available resources
is crucial to maximizing efficiency and minimizing
computation costs is very important to meet the
ever-growing requirements of these models.

In this context, we propose several contribu-

tions to reduce the costs associated with the train-
ing of neural networks in a massively distributed
environment. Our contributions focus on the pro-
cessing of data upstream of the model, in order
to improve the quality of the data supplied to the
neural network and facilitate its training. We fo-
cused on the processing of sparse data, such as
graphs, which pose particular challenges due to
their complex structures and potentially very large
sizes. The processing applied to these data are
designed to significantly improve the model’s per-
formance. Finally, we propose leveraging this pro-
cessing to reduce effectively the size of the data,
thereby decreasing the number of inputs while re-
taining sufficient information to ensure good model
accuracy.
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